Spiking RNN#
The spiking package provides leaky integrate-and-fire (LIF) spiking neural networks mapped from continuous rate RNNs.
Core Modules#
Module Overview#
- LIF_network_fnc.py
Core function for converting rate RNNs to spiking networks and running LIF simulations.
- eval_go_nogo.py
Evaluation functions for testing spiking network performance on Go-NoGo tasks.
- lambda_grid_search.py
Grid search optimization for finding optimal scaling factors in rate-to-spike conversion.
- utils.py
Utility functions for model loading, network configuration, and spike data analysis.
Quick Reference#
Main Functions:
LIF_network_fnc()
: Core rate-to-spike conversion and simulationeval_go_nogo()
: Evaluate Go-NoGo task performancelambda_grid_search()
: Optimize scaling factors
Configuration:
SpikingConfig
: Configuration dataclass for spiking RNN parameterscreate_default_spiking_config()
: Create default configuration
Utility Functions:
load_rate_model()
: Load PyTorch rate modelsformat_spike_data()
: Format spike data for analysis