Spiking RNN#

The spiking package provides leaky integrate-and-fire (LIF) spiking neural networks mapped from continuous rate RNNs.

Core Modules#

Module Overview#

LIF_network_fnc.py

Core function for converting rate RNNs to spiking networks and running LIF simulations.

eval_go_nogo.py

Evaluation functions for testing spiking network performance on Go-NoGo tasks.

lambda_grid_search.py

Grid search optimization for finding optimal scaling factors in rate-to-spike conversion.

utils.py

Utility functions for model loading, network configuration, and spike data analysis.

Quick Reference#

Main Functions:

  • LIF_network_fnc(): Core rate-to-spike conversion and simulation

  • eval_go_nogo(): Evaluate Go-NoGo task performance

  • lambda_grid_search(): Optimize scaling factors

Configuration:

  • SpikingConfig: Configuration dataclass for spiking RNN parameters

  • create_default_spiking_config(): Create default configuration

Utility Functions:

  • load_rate_model(): Load PyTorch rate models

  • format_spike_data(): Format spike data for analysis