Rate RNN#
The rate package provides continuous-variable rate RNN implementations for training models on cognitive tasks.
Core Modules#
Module Overview#
- model.py
Contains the main FR_RNN_dale class and backward-compatible task functions.
- tasks.py
Task-based architecture with abstract base classes and concrete task implementations for cognitive tasks.
- utils.py
Utility functions for GPU management, training helpers, and network configuration.
Quick Reference#
Main Classes:
FR_RNN_dale: Main rate RNN class with Dale’s principleRNNConfig: Configuration dataclass for rate RNN parametersAbstractTask: Base class for all cognitive tasksTaskFactory: Factory for creating task instances
Task Classes:
GoNogoTask: Go-NoGo impulse control taskXORTask: Temporal XOR working memory taskManteTask: Context-dependent sensory integration task
Key Functions:
set_gpu(): GPU device configurationcreate_default_config(): Create default configurationTaskFactory.create_task(): Create task instances
Supported Tasks:
Go-NoGo: Binary decision task with response inhibition
XOR: Temporal exclusive OR requiring working memory
Mante: Context-dependent sensory integration task