Rate RNN#
The rate package provides continuous-variable rate RNN implementations for training models on cognitive tasks.
Core Modules#
Module Overview#
- model.py
Contains the main FR_RNN_dale class and backward-compatible task functions.
- tasks.py
Task-based architecture with abstract base classes and concrete task implementations for cognitive tasks.
- utils.py
Utility functions for GPU management, training helpers, and network configuration.
Quick Reference#
Main Classes:
FR_RNN_dale
: Main rate RNN class with Dale’s principleRNNConfig
: Configuration dataclass for rate RNN parametersAbstractTask
: Base class for all cognitive tasksTaskFactory
: Factory for creating task instances
Task Classes:
GoNogoTask
: Go-NoGo impulse control taskXORTask
: Temporal XOR working memory taskManteTask
: Context-dependent sensory integration task
Key Functions:
set_gpu()
: GPU device configurationcreate_default_config()
: Create default configurationTaskFactory.create_task()
: Create task instances
Supported Tasks:
Go-NoGo: Binary decision task with response inhibition
XOR: Temporal exclusive OR requiring working memory
Mante: Context-dependent sensory integration task