Rate RNN#
The rate package provides continuous-variable rate RNN implementations for training models on cognitive tasks.
Core Modules#
Module Overview#
- model.py
Contains the main FR_RNN_dale class and task-specific functions for creating stimuli and targets.
- utils.py
Utility functions for GPU management, training helpers, and network configuration.
Quick Reference#
Main Classes:
FR_RNN_dale
: Main rate RNN class with Dale’s principleRNNConfig
: Configuration dataclass for rate RNN parameters
Key Functions:
set_gpu()
: GPU device configurationcreate_default_config()
: Create default configurationgenerate_input_stim_**()
: Task stimulus generation functionsgenerate_target_continuous_*()
: Task target generation functions
Supported Tasks:
Go-NoGo: Binary decision task with response inhibition
XOR: Temporal exclusive OR requiring working memory
Mante: Context-dependent sensory integration task