Rate RNN#

The rate package provides continuous-variable rate RNN implementations for training models on cognitive tasks.

Core Modules#

Module Overview#

model.py

Contains the main FR_RNN_dale class and task-specific functions for creating stimuli and targets.

utils.py

Utility functions for GPU management, training helpers, and network configuration.

Quick Reference#

Main Classes:

  • FR_RNN_dale: Main rate RNN class with Dale’s principle

  • RNNConfig: Configuration dataclass for rate RNN parameters

Key Functions:

  • set_gpu(): GPU device configuration

  • create_default_config(): Create default configuration

  • generate_input_stim_**(): Task stimulus generation functions

  • generate_target_continuous_*(): Task target generation functions

Supported Tasks:

  • Go-NoGo: Binary decision task with response inhibition

  • XOR: Temporal exclusive OR requiring working memory

  • Mante: Context-dependent sensory integration task