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Abstract

Transfer learning enhances the training of novel sensory and decision models by
employing rich feature representations from large, pre-trained teacher models. Cog-
nitive neuroscience shows that the human brain creates low-dimensional, abstract
representations for efficient sensorimotor coding. Importantly, the brain can learn
these representations with significantly fewer data points and less computational
power than artificial models require. We introduce Brain2Model Transfer Learning
(B2M), a framework where neural activity from human sensory and decision-
making tasks acts as the teacher model for training artificial neural networks. We
propose two B2M strategies: (1) Brain Contrastive Transfer, which aligns brain
activity and network activations through a contrastive objective; and (2) Brain
Latent Transfer, which projects latent dynamics from similar cognitive tasks onto
student networks via supervised regression of brain-derived features. We validate
B2M in memory-based decision-making with a recurrent neural network and scene
reconstruction for autonomous driving with a variational autoencoder. The results
show that student networks benefiting from brain-based transfer converge faster and
achieve higher predictive accuracy than networks trained in isolation. Our findings
indicate that the brain’s representations are valuable for artificial learners, paving
the way for more efficient learning of complex decision-making representations,
which would be costly or slow through purely artificial training.

∗ These authors jointly supervised this work.
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1 Introduction

Recent work in computational neuroscience reveals that neural populations encode low-dimensional,
abstract representations that enhance decision-making and sensorimotor behavior [1, 2, 3, 4, 5].
A key objective in the field is to create models that predict neural activity while uncovering the
computational principles behind these representations. Advances have been achieved in vision
and language, where convolutional and transformer-based models elucidate neural responses in
corresponding brain areas [6, 7, 8, 9, 10]. These findings indicate that artificial neural networks and
biological systems may adopt similar representational strategies for perception and decision-making.

Despite advances in large-scale artificial models in vision [11, 12, 13, 14], language [15, 16, 17, 18,
19], and decision-making [20, 21, 22], training neural networks to achieve generalizable abstractions
typically demands extensive supervision or large foundation models, which are slow and costly
to obtain. In contrast, the brain learns complex representations from sparse and ambiguous data,
efficiently guiding flexible decision-making and enabling rapid adaptation in novel settings [23, 24].

Cognitive neuroscience has revealed how the brain creates low-dimensional task-relevant representa-
tions. However, most previous methods have not effectively used these representations to influence
the learning dynamics of artificial models.

2 Related Work

Leveraging representations from large pre-trained models for efficient training of new task-specific
models has been extensively explored in transfer learning literature, achieving success in both
supervised [25, 26, 27, 28, 29] and reinforcement learning [30, 31, 32, 33].

Different transfer approaches have been proposed based on the type of knowledge being transferred
and the differences between the data available to the source and target models [34, 28, 29], facilitating
knowledge transfer across complex decision domains.

Past work has explored using sensory-based brain information to train convolutional neural networks
(CNNs) [35, 36, 37]. In McClure and Kriegeskorte (2016, the authors defined representational
dissimilarity matrices (DSMs) leveraging data in an MNIST/CIFAR100 visual recognition task and
utilized them to transfer information from a teacher model, which could in theory be a brain, to a
student CNN. Fong et. al, 2018 have shown the possibility of guiding support vector machine image
classifiers with brain-derived features. In Nishida et al. (2020, the authors utilize a series of linear
regression models to predict voxel-wise functional magnetic resonance imaging (fMRI) responses
during audiovisual stimulus presentation and subsequently guide learning of a VGG-16 model in
predicting scene-derived labels.

Human-derived behavioral variables may also be leveraged in this fashion to guide neural network
training [38, 39, 40]. For instance, in Sajda et al. (2023), the authors propose utilizing behavioral
variables such as level of interest, arousal, emotional reactivity, cognitive fatigue, or cognitive state
for training deep reinforcement learning models. Similarly, Shih et al. (2017) discuss the interaction
of these factors with electroencephalography (EEG) recordings in adapting AI systems to human
idiosyncrasies. Additionally, in Sucholutsky and Griffiths (2023), the authors show how even aligning
vision models to human behavioral judgments can improve their generalization, few-shot learning,
and robustness to adversarial attacks.

Despite this relevant work in the field, some outstanding gaps remain regarding the flexibility of these
methods and their application domains. For instance, utilizing representational dissimilarity matrices
to approximate neural data and artificial models requires discrete DSM classes to be manually defined
a priori, which reduces the flexibility of this method, especially for applications with non-discrete
state/action spaces. Additionally, leveraging higher-order cognitive functions as transfer signals, such
as memory or decision making, remains an underexplored research direction, above and beyond
convolutional neural networks for vision. Developing a general brain transfer learning framework
aiming to maximize mutual information between neural and artificial systems would be an important
step in this direction.
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3 Brain2Model Transfer Learning methods

To address these gaps, we propose Brain2Model Transfer Learning (B2M) to improve artificial model
learning by encouraging models to achieve similar embedding representations to the human brain,
leveraging human brain data collected while subjects performed the same task learned by the model.
Concretely, we augment standard learning objectives by adding a brain transfer loss term:

Ltotal = (1− α)Ltask + αLtransfer (1)

where Ltask is the standard loss function for the artificial learner in the task, Ltransfer is the loss
function comparing brain and artificial representational similarity, and α is the transfer weight
hyperparameter, designed to trade-off between transfer loss and task loss.

Since this is a general framework, obtaining Ltransfer is dependent on the current task and data
collection setup, and on the extent to which brain data and model training sets are aligned. Therefore,
we propose the following two alignment strategies, whose applicability depends on whether artificial
models are trained exactly on the same examples as seen by humans who performed the task, or
approximations of these examples (Fig. 1).

a Brain contrastive learning b Brain latent transfer

Figure 1: Obtaining Ltransfer in B2M. (a) Brain contrastive learning. A shared input is transformed
into both brain embeddings and artificial model embeddings of equal dimensionality. From input
batches containing several examples, we compute a similarity matrix between brain and model
embeddings of different inputs, which is utilized to obtain a transfer loss value. We designate
neural-model embedding pairs computed from the same input example as positive pairs, while pairs
computed from separate examples are designated negative pairs. (b) Brain latent transfer learning. An
input X from the human train set H is used to produce brain embeddings and artificial embeddings,
produced from a model trained with an artificial train set A. These embeddings are subsequently
compared with a mean square error distance to obtain a transfer loss.

3.1 Brain Contrastive Loss

One goal of B2M is to maximize the mutual information between neural sensorimotor representations
and their counterparts in artificial models. This aims to assist artificial learning by encouraging
models to find advantageous sensorimotor representational subspaces that might have been acquired
by the human brain over the course of task learning and, ultimately, evolution. We propose to achieve
this by adapting contrastive learning via an InfoNCE loss framework, such as the one adopted in
SimCLR, [41, 42], which aims to maximize mutual information between similar data points (Fig.
1a).

Given a sensory or contextual input X ∈ I , with X ∈ Rd1×d2×...×dn , where I is a train set presented
to both humans and artificial models, we propose aligning brain and artificial representations of X by
maximizing the mutual information between embeddings Ybrain ∈ RE and Ymodel ∈ RE , where E
is the embedding dimensionality. These embeddings are produced by non-linear transfer functions
such that Ybrain = fbrain(X) and Ymodel = fmodel(X), indicating compressed neural and artificial
representations of sensorimotor inputs, respectively. Any applicable dimensionality reduction method
can be utilized as f , or even the identity function, as long as the dimensionality between brain and
model embeddings is matched.

For this, we define a batch of b examples X ∈ I, [X1, X2, ..., Xb], and their respective neu-
ral and artificial embeddings Bneural = [Y(neural,1), Y(neural,2), ..., Y(neural,b)] and Bmodel =
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[Y(model,1), Y(model,2), ..., Y(model,b)]. From these, given a temperature hyperparameter τ , we obtain
a similarity matrix S = 1

τ (Bneural ×BT
model), which represents the similarity between neural and

artificial example pairs, including both pairs obtained from the same example Xi, but also pairs ob-
tained from different examples. Then, we define positive contrastive pairs Y(neural,i) and Y(model,i),
and negative contrastive pairs Y(neural,i) and Y(model,j) for all i ̸= j. With these, we define, for a
given anchor example i, with Ltransfer =

∑
i Ltransfer,i:

Ltransfer,i = − log
exp(Si,i)

exp(Si,i) +
∑

i̸=j exp(Si,j)
(2)

3.2 Brain Latent Transfer Loss

In decision-making tasks, future states are often dependent on decisions made in past episodes, as
well as the outcomes that occurred in them. For this reason, it is potentially challenging to assemble
a train set of episodes and environment states for an artificial agent that will exactly match the train
sets experienced by human subjects in a task, given that the agent is free to act differently from
their human counterparts during training. To circumvent this, instead of exact episode matching,
we propose matching brain embeddings obtained during exposure to an input X to the artificial
embeddings obtained during exposure to the same input X , as long as X is an approximation of the
examples contained in the artificial train set (Fig. 1b).

Concretely, given a sensory or contextual input X ∈ H, with X ∈ Rd1×d2×...×dn , where H is the
train set presented to humans, we assume brain activity produces an embedding Ybrain via a non-
linear transfer function fbrain, such that Ybrain = fbrain(X), with Ybrain ∈ RE , in which E is the
embedding dimension. Additionally, we assume the artificial model learns from examples X ′ ∈ A,
X ′ ∈ Rd1×d2×...×dn , where A is the train set presented to the artificial model, related but not
necessarily equal to H. Throughout its learning process, the artificial model finds a non-linear transfer
function fmodel which produces its own embedding Y ′

model = fmodel(X
′), with Y ′

model ∈ RE .

Then, we propose to achieve brain-to-model transfer by performing a latent transfer between brain
and model embeddings. Concretely, for an input X ∈ H previously presented to humans, we obtain
its embedding produced by the artificial model Ymodel = fmodel(X) and minimize its mean square
error distance to its known corresponding brain embedding Ybrain = fbrain(X):

Ltransfer =
1

E

E∑
i=1

(Ymodel,i − Ybrain,i)
2 (3)

4 B2M improves RNN learning in memory-based decision making task

4.1 Memory task and brain embeddings

The flexibility of human cognition remains a challenge for artificial systems to fully replicate. Given
novel contexts or a novel instruction set, humans are able to quickly adapt and correctly follow new
goals [43, 44, 45, 46]. To understand the role of human brain activity in rapid goal switching, we
utilized data collected from a memory-based goal switching task (Fig. 2a) in which intracranially
implanted epilepsy patients (N=17 sessions in 6 patients) had to memorize the current target stimulus
and watch a sequence of visual stimuli. If the current target was presented, the correct response
would be to press an accept button; otherwise, the correct response would be to press a reject button.
As soon as the subject correctly accepted the current target, the target stimulus would shift to another
stimulus in the episode, and the current target would alternate between these two until the end of the
episode. Episodes had a variable number of steps (stimulus presentations) and 3 possible stimuli: 2
target candidates and one distractor stimulus. In total, 400 steps were given to each subject.

Invasive neural data was acquired with IRB approval and informed consent, utilizing the Blackrock
system. Standard spike sorting was performed with WaveClus [47]. Following spike sorting, we
obtained a total of 371 neurons (31 in orbitofrontal cortex, 202 in hippocampus, 4 in entorhinal cortex,
and 134 in cingulate cortex, Fig. 2b). We applied the following pre-processing steps to temporally
align neural data and RNN activity: (1) we aligned all spikes to stimulus presentation and created
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Figure 2: RNN performance in memory-based decision making task with B2M. (a) Task design. The
task alternated between two states, indicating which of the stimuli was the current target. In each
episode, two stimuli were designated as potential targets, and one stimulus was always irrelevant.
Patients observed a sequence of stimulus images and were prompted to respond whether the current
image was the target or not. The task alternated to the other state once a target was correctly identified.
(b) Invasive electrode mapping for single neuron recording across epilepsy patients. (c) RNN for
memory-based decision making. The agent consisted of a GRU layer with dropout, followed by two
fully connected (FC) layers. The first FC layer was jointly embedded with human brains via B2M.
(d) Mean RNN test accuracy over epochs for different values of B2M strength α, including no B2M
(dashed black curve). (e) Test accuracy at the end of training for different values of B2M strength α,
for true brain embeddings (red) and noise (beige). Error bars represent standard error of the mean.

two time periods: pre-stimulus (-1s to 0, resolution: 10ms) and post-stimulus (0s to reaction time).
(2) We normalized post-stimulus spikes by reaction time to always fit into a 100-element rate vector,
and concatenated pre-stimulus and post-stimulus normalized spikes into a spiking rate vector. (3) We
filtered spike rates by convolving the rate vector of each step with a causal exponential filter (kernel:
20 zeros followed by e−0.5x, x = [0, 0.5, 1, ..., 9.5, 10]).

With this neural dataset, our study focused on transfer learning between behavioral sequences and
neural representations in this structured sequential decision-making task. Training inputs were
comprised of one-hot coded stimulus identities, organized into temporally ordered features as task
events, and corresponding binary target sequences.

To learn shared representations across multiple behavioral sessions, we used the Contrastive Em-
bedding by Relative Arrangement (CEBRA) framework [48] (Apache License). CEBRA is a
self-supervised learning algorithm that maps high-dimensional neural activity to a low-dimensional
space by leveraging temporal structure and optional contextual supervision. Below, we describe the
full procedure used to generate multi-session embeddings from neural recordings across 17 behavioral
sessions.

We aggregated neural activity from all neurons in the 17 distinct recording sessions. Each session
contained neural population firing rates stored as 3D arrays with shape (Nsteps, Ntimes, Nneurons),
where Nsteps represents the number of unique stimuli presented to a subject, considering each
stimulus constitutes a step. For each session, data were reshaped into 2D arrays of shape (Nsteps ×
Ntimes, Nneurons) and paired with time labels repeated across trials. These reshaped arrays represent
temporally ordered sequences of neural activity and serve as the input to CEBRA.
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We instantiated a CEBRA model configured for multi-session contrastive learning. The following
hyperparameters were used: model architecture: offset10-model, batch size: 512, learning rate:
3 · 10−4, temperature mode: auto with a minimum temperature of 0.1, embedding dimensionality:
7, maximum training iterations: 15,000, distance metric: cosine similarity, supervision: conditional
sampling based on relative time (i.e., "time-delta"), utilizing time within step as a supervising feature.

We trained the model jointly on all 17 sessions by supplying the data as a list of session-wise
arrays. This procedure allows the model to learn an embedding space that generalizes across session
boundaries while respecting the temporal dynamics within each session. After training, each session’s
neural data were projected into a shared 7-dimensional embedding space. This dimensionality was
chosen since it was the minimum available number of neurons in any given session. The output
consisted of one embedding per time point per trial for each session.

4.2 Model architecture and training

To model an artificial agent performing this task, we implemented a single-layer gated recurrent unit
(GRU) network designed for sequence modeling with alignment to brain-derived embeddings (Fig.
2c). Input size was 4, to provide a one-hot coded version of the 3 possible stimuli, plus one element
for when no stimulus was on the screen (i.e., pre-stimulus window). The architecture consisted
of a GRU layer (hidden size=512, num layers=1), a dropout layer (rate 0.3), transfer temperature
= 0.1, a linear embedding projection layer (hidden dimensions: 7), an output layer mapping the
embedding to a single continuous output, followed by a scaled sigmoid activation mapping outputs
to the range [-1.5, 1.5]. This structure allowed the model to jointly produce behaviorally predictive
outputs while internally encoding representations that could align with neural embeddings, via
direct brain contrastive learning. In training with brain alignment, we presented trial sequences to
the network in a one-to-one mapping with episodes seen by human subjects, by one-hot coding the
presented stimulus and showing the context of each episode to the model as a one-hot coded version
of the current target stimulus at the beginning of each episode. We trained the network for the same
total number of steps seen by humans (6800 steps in total across sessions). Subsequently, we tested
network performance in 1000 simulated sequences of 26 steps each, totaling 26000 test steps. The
length 26 was chosen since it was the maximum sequence length experienced by humans in the task.
These sequences were previously unseen by humans. Simulated data was created with the same task
rules as the real experiment.

Each configuration (i.e., each value of α = [0, 0.02, ..., 0.2]) was trained with 10 random initialization
seeds. Models were optimized with Adam (learning rate = 10−4) for 150 epochs with a batch size of
1. Model performance was evaluated on held-out simulated test episode data. Accuracy was measured
by comparing predictions to binary targets.

4.3 Results

We measured network performance by accuracy in left-out trials, determined by whether the agent
correctly accepted or rejected stimuli in each step (Fig. 2d). While all non-zero magnitudes
of brain transfer α led to faster approximation to convergence values, we also observe that an
optimal magnitude of α (α = 0.02) led to significantly better performance at the end of training
(accuracy = 0.987), than in the absence of brain transfer, at accuracy = 0.967 (p < 0.001,
Wilcoxon rank-sum test, one-sided), (Fig. 2e). The displayed standard error was computed across 10
initialization seeds. To address the possibility that the network might be learning better with B2M
than no-transfer due to noise regularization [49, 50], we performed 10 control runs for each value of
α, changing brain embeddings for standard Gaussian noise. We observe that noise-driven learning
actually performs worse than no-transfer and, consequently, worse than B2M as well (Fig. 2e).

5 B2M for naturalistic scene reconstruction in VAE for driving task

5.1 Virtual reality driving task and EEG recordings

To evaluate the generality and scalability of the B2M framework beyond invasive recordings, we
next turn to a naturalistic visual reconstruction task using non-invasive EEG data. We explore
B2M in a distinct model architecture (variational autoencoders) and apply the Brain Latent Transfer
strategy to accommodate the lack of one-to-one trial correspondence between human and artificial
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Figure 3: VAE performance in driving scene reconstruction with B2M. (a) Left: Data collection
schematic: subjects steered a vehicle in VR with simultaneous EEG recordings; Right: VR driving
scene example, as experienced by human subjects. (b) The VAE for scene reconstruction consisted of
an encoder-embedding-decoder architecture. The embedding layer was jointly embedded with EEG
data from human subjects driving in VR. (c) Mean test loss over epochs for different values of B2M
strength α, including no B2M (dashed black curve). (d) Test loss at the end of training for different
values of B2M strength α, for B2M with true brain data (red) and noise (beige). Error bars represent
standard error of the mean. (e) Examples of original (top) and reconstructed (bottom) vehicle driving
scenes, produced with B2M trained with α = 0.1.

data. This enables us to assess the effectiveness of B2M in a more ecologically valid and scalable
setting involving real-time visual processing. For this, we tested B2M on a dataset of human subjects
performing a vehicle driving task in a virtual reality (VR) environment, while they had 64-channel
EEG activity recorded (Fig. 3a). This task has been previously shown to elicit activity in dorsolateral
prefrontal cortex and anterior cingulate that are predictive of vehicle steering behavior [51].

Healthy adults (N=11 sessions in 9 subjects, with written informed consent, IRB approved) completed
a boundary-avoidance driving task inside a virtual-city environment rendered through an HTC Vive
Pro Eye headset. Seated at a Logitech G920 steering wheel with accelerator and brake pedals,
participants piloted a virtual car while continuous “fog” opacity dynamically modulated visual
uncertainty on a trial-by-trial staircase. Crashes with road boundaries incurred point penalties to
encourage timely, accurate steering. Scalp EEG was recorded throughout with a 64-channel BioSemi
ActiveTwo system (Ag/AgCl active electrodes, international 10–20 system, impedances < 50kΩ) at
2048Hz; a lossless screen-capture of the VR scene was recorded via the Unity engine; steering-wheel
position, pedal inputs, and headset-embedded eye-tracking data were time-synchronized with the
EEG stream for later source and connectivity analyses.

One possible task to model in this setting is the sensorimotor processing that occurs as the brain is
parsing out a visual scene into actionable items, with the goal of safely driving through the city and
accruing rewards. As such, we adapt a previously established [52] variational autoencoder (VAE)
trained with the specific purpose of creating an effective embedding of urban scenes for driving, to be
later passed onto a reinforcement learning agent. The VAE (MIT License) has already been described
elsewhere, but we will detail its adaptation here.

The model consists of an encoder-embedding-decoder architecture (Fig. 3b), that reconstructs input
target urban scenes into matching outputs. These scenes were previously obtained in the CARLA
driving simulator environment [53] and made publicly available [52], with 12000 preset training
images and 2000 test images, which are examples of driving scenes. We changed the embedding
dimensionality from the original VAE to 64 dimensions, to directly match the 64 channels recorded in
EEG sessions. The encoder and decoder each contain 5 convolutional/leaky ReLU layers and one fully
connected layer (encoder dimensions: [3, 32, 64, 128, 256], decoder dimensions: [256, 128, 64, 32, 3],
fully connected dimensions: 1024.). The last convolutional encoder layer also contains a batch
normalization step. Training visual scenes to be reconstructed were presented in batches (batch size:
32) of 160× 80 pixel images.
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For transfer learning, we used temporally aligned brain signals (EEG) and downsampled VR video
frames (8Hz), reshaped to 160×80 pixels, totaling 133120 frames across all subjects. Since the VAE
train set (simulated environment) and the human train set in VR are not exactly matching, we
employed Brain Latent Transfer for B2M. Additionally, since all subjects had the same spatially
matching EEG channels, we did not perform any additional brain embedding steps. To present
video/EEG data to the model in order to build the transfer loss, we treated each temporally aligned
video/EEG example pair as a unique input and batched them (batch size: 256) and presented one
batch at a time, in tandem with each training image batch.

All network hyperparameters were kept the same as in the original implementation [52], except for
embedding dimensionality, which we changed to 64, in alignment with EEG inputs. Training was
repeated across 10 random initializations for each α = [0, 0.02, ..., 0.2] value, yielding a total of 110
full training runs. Each model was trained for 100 epochs, using the Adam optimizer (learning rate
= 10−4) and default momentum settings. After each epoch, models were evaluated on a held-out
validation set of naturalistic scenes.

5.2 Results

In a small percentage of runs, we observed diverging test loss (loss > 1) that did not recover over the
course of training (5 out of 110 runs, 4.5%). We excluded these runs from the subsequent analysis and
visualization. Further work must be done to characterize the instances in which diverging learning
occurs.

We measured network performance by reconstruction loss in left-out naturalistic driving scenes,
determined by mean square error between target image and source image (Fig. 3c). All non-zero
magnitudes of brain transfer α led to faster approximation to convergence values, and we also
observe that a set of α values (α = [0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18]) led to significantly better
performance at the end of training (mean loss = [0.074, 0.074, 0.071, 0.073, 0.072, 0.073, 0.072],
respectively). This is compared to the absence of brain transfer, at mean loss = 0.080 (p < 0.01
for α ∈ {0.06, 0.12, 0.18} and p < 0.001 for α ∈ {0.08, 0.1, 0.14, 0.16}, Wilcoxon rank-sum test,
one-sided), (Fig. 3d). The displayed standard error was computed across 10 initialization seeds. To
address the possibility that the network might be learning better with B2M than no-transfer due to
noise regularization, we performed 10 control runs for each value of α, changing brain embeddings
for standard Gaussian noise. We observe that noise-driven learning performs worse than B2M in this
task as well (Fig. 3d).

For visualization purposes, we include examples of original and reconstructed driving scenes with
brain transfer, for α = 0.1 (Fig. 3e).

6 Limitations

The observed improvements in learning performance could still be partially attributable to a regular-
ization effect introduced by structured noise in the neural data, rather than reflecting brain information
transfer alone. Future work should explore more refined controlled ablation studies (e.g., using
permuted or synthetic neural data with matched noise statistics to disentangle representational transfer
from implicit regularization effects).

In a small subset of training runs, Brain Latent Transfer produced instability, occasionally resulting in
catastrophic model divergence. This could potentially arise when the neural training data and model
training data differ substantially in input distribution, potentially exposing the model to conflicting
or out-of-distribution (OOD) latent signals. Addressing this challenge may require more robust
alignment techniques, such as OOD detection or reweighting schemes to reconcile mismatched
training domains. Additionally, systematic benchmarking across architectures and input domains will
be essential for assessing B2M’s scalability.

Furthermore, the benefits of B2M were tested on RNNs and VAEs. It remains unclear whether
these findings extend to other architectures, such as reinforcement learning agents, or task modalities
beyond vision and memory-based decision making. Further work must be done to establish extended
generalization. Systematic benchmarking across architectures and input domains will be essential for
assessing B2M’s scalability.
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Finally, while B2M improves testing performance, it is not yet determined what portions of informa-
tion are being transferred and whether the brain-derived embeddings encode high-level abstractions,
low-level features, or task-specific biases. Developing tools to interpret and visualize the aligned
latent spaces will be useful for understanding the semantic content of the transfer signal.

7 Ethical considerations

Despite its promise, this line of work introduces important ethical considerations. Critically, the
use of human brain data for training artificial models raises issues of privacy, consent, and data
stewardship. All neural data used in this study were anonymized and collected under IRB approval
with informed consent, and care must be taken that these standards are upheld even if the economic
viability of B2M in large-scale projects is demonstrated.

Additionally, techniques that align AI systems with neural representations could, in theory, be
misused in contexts such as surveillance or cognitive-behavioral manipulation. Although we do
not release pretrained models, any future release will include usage terms to prevent misuse in the
context of human subjects protection. We encourage the community to proactively discuss ethical
governance frameworks and emphasize full transparency, human subjects protection, consent, and
user autonomy in downstream applications. Additionally, care must be taken that human participants
are compensated fairly for the data they provide for building better models, which could ultimately
provide significant economic potential at scale.

8 Discussion

In this work, we demonstrate, as a proof of principle, that low-dimensional brain representations
can be leveraged as a substrate to improve neural network training in complex cognitive tasks
involving sensorimotor processing, memory, and flexible decision-making. Our results contribute to
the growing body of literature at the intersection of neuroscience and machine learning, suggesting
that brain-derived priors may offer useful guidance for training artificial agents, above and beyond
utilizing such agents for explaining variance patterns in neural data.

This approach raises several promising avenues for future exploration. First, future work may
systematically investigate the scalability of brain-guided training: what is the sample efficiency of
such priors, and how does performance scale with the size, dimensionality, and diversity of the neural
embeddings? Understanding these dynamics could enable principled integration of neural data into
large-scale machine learning pipelines.

Second, an open question remains regarding the transferability and utility of different brain recording
modalities. Given their varying signal-to-noise ratios and spatial/temporal resolution, it is critical to
benchmark the relative effectiveness of invasive (e.g., ECoG, depth recordings) versus non-invasive
(e.g., fMRI, EEG) data in shaping model representations across cognitive domains.

Third, this work requires a deeper investigation into the geometry of the brain-induced low-
dimensional spaces. By characterizing how artificial models restructure their internal represen-
tations in response to brain-derived constraints, we can gain insight into both the alignment between
biological and artificial computation and the types of inductive biases these embeddings confer.

Fourth, future work can explore modular alignment strategies, in which targeted brain embeddings
derived from functionally specific regions (e.g., early visual cortex, hippocampus, prefrontal cortex)
are used to selectively shape or pre-train corresponding architectural modules (e.g., CNNs, RNNs,
value-based learners). This could provide a biologically grounded path toward more interpretable and
modular AI systems, with potential implications for embodied cognition.

More broadly, this work opens a path toward data-efficient brain-aligned training, where sparse
but functionally aligned neural recordings guide the acquisition of generalizable representations
in artificial agents. By continuing to bridge neuroscience and machine learning through shared
principles of representation and computation, we may build novel strategies for systems that learn
uniquely human skills.

9



9 Author Contributions

TGA conceptualized and implemented the B2M method. TGA, VL, PS, and NR contributed to the final
implementation of the B2M algorithm. TGA and VL deployed B2M for the driving task. VL preprocessed
driving task data. TGA deployed B2M for the memory task. HA and SAS conceptualized the memory task.
HA, RA, AJW, EB, BYH, and SAS operated recording systems and collected memory task data. HA and RA
preprocessed memory task brain and behavioral data. TGA, VL, BYH, PS, SAS, and NR wrote the manuscript.

10 Acknowledgements

The memory task experiment was funded by NIH grant 5U01NS121472-05. We are grateful for the support
from the Air Force Office of Scientific Research under award number FA9550-22-1-0337. SAS is a consultant
for Boston Scientific, Abbott, Koh Young, Zimmer Biomet, Neuropace; Co-founder of Motif Neurotech.

10



References
[1] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural net-

work that finds a naturalistic solution for the production of muscle activity. Nature Neuroscience,
18(7):1025–1033, 2015.

[2] Peiran Gao and Surya Ganguli. On simplicity and complexity in the brave new world of
large-scale neuroscience. Current opinion in neurobiology, 32:148–155, 2015.

[3] Juan A Gallego, Matthew G Perich, Lee E Miller, and Sara A Solla. Neural manifolds for the
control of movement. Neuron, 94(5):978–984, 2017.

[4] Silvia Bernardi, Marcus K Benna, Mattia Rigotti, Jérôme Munuera, Stefano Fusi, and C Daniel
Salzman. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell,
183(4):954–967, 2020.

[5] W Jeffrey Johnston, Justin M Fine, Seng Bum Michael Yoo, R Becket Ebitz, and Benjamin Y
Hayden. Semi-orthogonal subspaces for value mediate a binding and generalization trade-off.
Nature Neuroscience, 27(11):2218–2230, 2024.

[6] Daniel LK Yamins, Ha Hong, Charles F Cadieu, Ethan A Solomon, Darren Seibert, and James J
DiCarlo. Performance-optimized hierarchical models predict neural responses in higher visual
cortex. Proceedings of the national academy of sciences, 111(23):8619–8624, 2014.

[7] Jerry Tang, Meng Du, Vy Vo, Vasudev Lal, and Alexander Huth. Brain encoding models
based on multimodal transformers can transfer across language and vision. Advances in neural
information processing systems, 36:29654–29666, 2023.

[8] Jerry Tang, Amanda LeBel, Shailee Jain, and Alexander G Huth. Semantic reconstruction of
continuous language from non-invasive brain recordings. Nature Neuroscience, 26(5):858–866,
2023.

[9] Eshed Margalit, Hyodong Lee, Dawn Finzi, James J DiCarlo, Kalanit Grill-Spector, and
Daniel LK Yamins. A unifying framework for functional organization in early and higher
ventral visual cortex. Neuron, 112(14):2435–2451, 2024.

[10] Rosa Cao and Daniel Yamins. Explanatory models in neuroscience, part 1: Taking mechanistic
abstraction seriously. Cognitive Systems Research, 87:101244, 2024.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[12] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan,
Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324,
2019.

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning,
pages 8748–8763. PmLR, 2021.

[14] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[15] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks. arXiv preprint arXiv:1908.10084, 2019.

[16] Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-Anke. Tweet-
eval: Unified benchmark and comparative evaluation for tweet classification. arXiv preprint
arXiv:2010.12421, 2020.

11



[17] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[18] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[19] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437, 2024.

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[21] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354–359, 2017.

[22] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[23] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. Building
machines that learn and think like people. Behavioral and brain sciences, 40:e253, 2017.

[24] Brenden M Lake, Tal Linzen, and Marco Baroni. Human few-shot learning of compositional
instructions. arXiv preprint arXiv:1901.04587, 2019.

[25] Chang Wang and Sridhar Mahadevan. Heterogeneous domain adaptation using manifold
alignment. In IJCAI proceedings-international joint conference on artificial intelligence,
volume 22, page 1541. Citeseer, 2011.

[26] Lixin Duan, Dong Xu, and Ivor Tsang. Learning with augmented features for heterogeneous
domain adaptation. arXiv preprint arXiv:1206.4660, 2012.

[27] Joey Zhou, Sinno Pan, Ivor Tsang, and Yan Yan. Hybrid heterogeneous transfer learning through
deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 28,
2014.

[28] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal
of Big Data, 3:1–40, 2016.

[29] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu. A
survey on deep transfer learning. In Artificial Neural Networks and Machine Learning–ICANN
2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October
4-7, 2018, Proceedings, Part III 27, pages 270–279. Springer, 2018.

[30] Matthew E Taylor, Peter Stone, et al. Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning Research, 8(9), 2007.

[31] Beomjoon Kim, Amir-massoud Farahmand, Joelle Pineau, and Doina Precup. Learning from
limited demonstrations. Advances in Neural Information Processing Systems, 26, 2013.

[32] Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz
Swirszcz, and Max Jaderberg. Distilling policy distillation. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pages 1331–1340. PMLR, 2019.

[33] Zhuangdi Zhu, Kaixiang Lin, Anil K Jain, and Jiayu Zhou. Transfer learning in deep reinforce-
ment learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
45(11):13344–13362, 2023.

12



[34] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[35] Patrick McClure and Nikolaus Kriegeskorte. Representational distance learning for deep neural
networks. Frontiers in Computational Neuroscience, 10:131, 2016.

[36] Ruth C Fong, Walter J Scheirer, and David D Cox. Using human brain activity to guide machine
learning. Scientific Reports, 8(1):5397, 2018.

[37] Satoshi Nishida, Yusuke Nakano, Antoine Blanc, Naoya Maeda, Masataka Kado, and Shinji
Nishimoto. Brain-mediated transfer learning of convolutional neural networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 5281–5288, 2020.

[38] Victor Shih, David C Jangraw, Paul Sajda, and Sameer Saproo. Towards personalized human
ai interaction-adapting the behavior of ai agents using neural signatures of subjective interest.
arXiv preprint arXiv:1709.04574, 2017.

[39] Paul Sajda, Sameer Saproo, Victor Shih, Sonakshi Bose Roy, and David Jangraw. Systems
and methods for deep reinforcement learning using a brain-artificial intelligence interface,
September 12 2023. US Patent 11,755,108.

[40] Ilia Sucholutsky and Tom Griffiths. Alignment with human representations supports robust
few-shot learning. Advances in Neural Information Processing Systems, 36:73464–73479, 2023.

[41] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[42] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In International conference on machine
learning, pages 1597–1607. PmLR, 2020.

[43] Elliot H Smith, Guillermo Horga, Mark J Yates, Charles B Mikell, Garrett P Banks, Yagna J
Pathak, Catherine A Schevon, Guy M McKhann, Benjamin Y Hayden, Matthew M Botvinick,
et al. Widespread temporal coding of cognitive control in the human prefrontal cortex. Nature
Neuroscience, 22(11):1883–1891, 2019.

[44] Margaret M Henderson, John T Serences, and Nuttida Rungratsameetaweemana. Dynamic
categorization rules alter representations in human visual cortex. Nature Communications,
16:3459, 2025.

[45] Kalman A Katlowitz, Shraddha Shah, Melissa C Franch, Joshua Adkinson, James L Belanger,
Raissa K Mathura, Domokos Meszéna, Elizabeth A Mickiewicz, Matthew McGinley, William
Muñoz, et al. Learning and language in the unconscious human hippocampus. bioRxiv, pages
2025–04, 2025.

[46] Tomas G Aquino, Jeffrey Cockburn, Adam N Mamelak, Ueli Rutishauser, and John P O’Doherty.
Neurons in human pre-supplementary motor area encode key computations for value-based
choice. Nature Human Behaviour, 7(6):970–985, 2023.

[47] R Quian Quiroga, Zoltan Nadasdy, and Yoram Ben-Shaul. Unsupervised spike detection and
sorting with wavelets and superparamagnetic clustering. Neural Computation, 16(8):1661–1687,
2004.

[48] Steffen Schneider, Jin Hwa Lee, and Mackenzie Weygandt Mathis. Learnable latent embeddings
for joint behavioural and neural analysis. Nature, pages 1–9, 2023.

[49] Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J Roberts, and Chris C Holmes.
Explicit regularisation in gaussian noise injections. Advances in Neural Information Processing
Systems, 33:16603–16614, 2020.

[50] Nuttida Rungratsameetaweemana, Robert Kim, Thiparat Chotibut, and Terrence J Sejnowski.
Random noise promotes slow heterogeneous synaptic dynamics important for robust working
memory computation. Proceedings of the National Academy of Sciences, 122(3):e2316745122,
2025.

13



[51] Sharath Koorathota, Jia Li Ma, Josef Faller, Linbi Hong, Pawan Lapborisuth, and Paul Sajda.
Pupil-linked arousal correlates with neural activity prior to sensorimotor decisions. Journal of
Neural Engineering, 20(6):066031, 2023.

[52] Raza Asad Idrees. Implementing a deep reinforcement learning model for autonomous driving.
Bachelor’s thesis, Budapest University of Technology and Economics, 2022.

[53] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017.

14



Technical Appendix

Computer Resources

All experiments were performed on a Lambda Labs server, with the following characteristics: 192
CPUs, AMD Ryzen Threadripper PRO 7995WX 96-Cores, 5390MHz (maximum), graphics card:
NVIDIA Corporation AD102GL [RTX 6000 Ada Generation], 512GB RAM, 18 TB HD storage.

On this machine, the 220 memory task runs (RNN: B2M and noise) took 14.16h in total, whereas the
220 driving task runs (VAE: B2M and noise) took 113.59h in total.

Human Subjects

For the memory-based decision-making task, we collected intracranial data from 6 human epilepsy
patients, undergoing seizure monitoring prior to surgery. Patients read the following text on the
screen, substituting target-stim1 and target-stim2 for each episode with the actual target stimuli for
that episode:

A scientist is studying different patterns. Your job is to help him. Objects will
appear one after another, and he wants you to take a picture when you spot a
particular pattern in their sequence. (For example, a Vase followed by a Flower.)"
We’ll always tell you what pattern to look for. Every few objects, there will be a
new pattern to watch for. When you spot the pattern, press your photograph button
to take a picture. Otherwise, press the appropriate button to skip that object. We’ll
tell you which button is which on each trial. The objects can appear in any order,
including several of the same type in a row. A new object will appear every two
seconds or so."
"Press ’LEFT’ to take a picture, and press ’RIGHT’ to skip this object. Wait for the
first [target-stim1], then take a picture of it. Then wait for the first [target-stim2],
and take a picture of it. Alternate taking pictures of one [target-stim1] and one
[target-stim2].

For the VR driving task, we collected EEG data from 9 healthy human subjects. They had prior
driving experience, normal or corrected-to-normal vision, and reported they were not prone to motion
sickness. Subjects were verbally instructed to drive a car along a road in VR for a fixed amount of
time, avoiding collisions. They were told that collisions would deduct an amount of money from their
total reward bonus, which was displayed on the car’s dashboard. They could accelerate, brake, and
steer with realistic input controls. Subjects were compensated at a rate of $20/h for 3 hours. EEG
contact positioning was the same for all subjects, as displayed in Fig. 4
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Figure 4: EEG standard contact map. All participants in the VR driving task underwent EEG
recording, with electrodes positioned along the same standard contact grid. Nz indicates the direction
of the front of the head.
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