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Abstract15

Recurrent neural networks (RNNs) based on model neurons that communicate via continuous signals16

have been widely used to study how cortical neurons perform cognitive tasks. Training such networks17

to perform tasks that require information maintenance over a brief period (i.e., working memory18

tasks) remains a challenge. Critically, the training process becomes difficult when the synaptic decay19

time constant is not fixed to a large constant number for all the model neurons. We hypothesize that20

the brain utilizes intrinsic cortical noise to generate a reservoir of heterogeneous synaptic decay time21

constants optimal for maintaining information. Here, we show that introducing random, internal22

noise to the RNNs not only speeds up the training but also produces stable models that can maintain23

information longer than the RNNs trained without internal noise. Importantly, this robust working24

memory performance induced by incorporation of internal noise during training is attributed to an25

increase in synaptic decay time constants of a distinct subset of inhibitory units. This increase leads26

to slower decay of stimulus-specific activity, which plays a critical role in memory maintenance.27

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


Introduction28

It is widely acknowledged that the cortex exhibits a high level of spontaneous activity that appears29

unrelated to task-specific neural codes or behaviors. However, recent works have demonstrated that30

such “cortical noise” contains information about the environmental context and has a direct impact31

on downstream behavioral outcomes [1–3]. For instance, Musall et al. [1] showed that the cortical32

noise in mice contains information about the visual stimulus even in the absence of a task, suggesting33

that it may play a role in sensory processing. Similarly, Stringer et al. [3] found that the cortical34

noise in mice contains information about the animal’s location and movement speed, which is crucial35

for navigation. Furthermore, previous studies have also shed light on the significance and relevance36

of cortical noise to cognitive processes. For example, Caron et al. [4] showed that the random37

structures of the olfactory system in Drosophila optimized the diversity of odor representations in38

neural circuits. Together, these findings challenge the traditional view of cortical noise as mere39

“background noise,” highlighting its potential role in cognitive functions.40

In addition to the experimental findings, there is growing evidence from computational and41

modeling studies that introducing noise during the training process can lead to improved stability42

and robustness of neural networks. Specifically, several studies have demonstrated that injecting43

Gaussian noise during the training process of multi-layer perceptron (MLP) and recurrent neural44

networks (RNNs) can improve their performance [5–7]. For example, Lim et al. [7] examined the45

impact of injecting noise into the hidden states of vanilla RNNs and found that it contributed to46

stochastic stabilization through implicit regularization [8]. Additionally, Camuto et al. [6] studied the47

regularization effects induced by Gaussian noise in MLPs and showed that the explicit regularization48

provided several benefits, including increased robustness to perturbations.49

Despite the demonstrated benefits of noise injection in vanilla RNNs and MLPs, it is not yet50

clear whether these findings extend to more biologically plausible RNNs that incorporate neuronal51

firing rate dynamics. It is also unclear if introducing noise can improve the cognitive capabilities of52

these RNNs. We hypothesize that incorporating noise into such biologically plausible RNNs will give53

rise to persistent activity, which in turn will be crucial for enhancing working memory performance.54

In this study, we propose a systematic approach to address these questions. Specifically, we55

investigate the impact of noise during training of firing-rate RNNs to perform tasks that require56

different cognitive functions, such as decision making and working memory. We show that the57

introduction of noise during training significantly enhances the RNN’s performance on tasks that58

specifically require working memory. By dissecting the networks trained with noise and employing59
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stability analysis methods, we further show that noise induces slow dynamics in inhibitory units and60

forces these units to be more active, resulting in more stable memory maintenance. These findings61

aligned with recent experimental and theoretical studies that place specific subtypes of inhibitory62

neurons at the center of working memory computations [9–13]. Therefore, our study illustrates how63

seemingly random noise in the cortex could lead to specific changes in synaptic dynamics critical for64

complex cognitive functioning.65

Results66

Biologically plausible RNN model and task overview. Even though recent advances in deep67

learning and artificial intelligence (AI) have greatly increased the functionality and capability of68

artificial neural network models, it is still challenging to train a network of model neurons to perform69

cognitive tasks that require memory maintenance. Models based on recurrent neural networks70

(RNNs) of continuous-variable firing rate units have been widely used to reproduce previously71

observed experimental findings and to explore neural dynamics associated with cognitive functions72

including working memory, an ability to maintain information over a brief period [14–17].73

We study the following RNN model composed of excitatory and inhibitory rate units:74

τi
dxi
dt

= −xi +

N∑
j=1

wijϕ(xj) + (win)iu (1)

where τi and xi refer to the synaptic decay time-constant and synaptic current variable, respectively,75

for unit i. The synaptic current variable is converted to the firing-rate estimate via a nonlinear76

transfer function (ϕ(·)). Throughout this study, we employed the standard sigmoid function for ϕ.77

wij is the synaptic strength from unit j to unit i, and u(t) is the task-specific input data given to78

the network. The input signals are given to neuron i via (win)i.79

The above firing-rate RNN model was trained using backpropagation through time (BPTT; [18])80

to perform a task that involves maintaining information over a brief period (i.e., working memory81

task). The task is a delayed match-to-sample (DMS) task that requires the model to match the signs82

of the two sequential input stimuli (Figure 1a; see Methods). While the model has shown success in83

various cognitive tasks [14–17], training the model with important biological constraints to perform84

the DMS task with a long delay period between the two input stimuli remains challenging. Notably,85

the training time increases exponentially as a function of the delay duration. As shown in Figure 1b,86

the model required more trials to achieve successful training on the DMS task as the delay interval87

increased from 50 ms to 150 ms and 250 ms (all Ps < 0.001, two-sided Wilcoxon rank-sum test).88

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


Moreover, when the synaptic decay time constant (τ) was fixed at a small constant (i.e., fast decay89

rate), the training process failed to converge.90

Noise improves learning and enhances network resilience on working memory tasks. In91

order to study the effects of noise on the dynamics of the firing-rate RNNs and their performance92

on the DMS task, we introduced noise in the form of random Gaussian currents injected into the93

units during the training process (Figure 1c; see Methods). For each noise level (C; see Methods),94

we trained 50 RNNs to perform the DMS task with a delay interval of 250 ms. Specifically, there are95

4 stimulus conditions (s = +1/+ 1, s = +1/− 1, s = −1/+ 1, and s = −1/− 1). For the matched96

cases (stimulus condition 1 and 4), the model had to generate an output signal approaching +1. For97

stimulus condition 2 and 3 where the signs of the two sequential stimuli were opposite, the model98

had to produce an output signal approaching -1. As shown in Figure 1d, the training success rate99

for the baseline model (i.e., no internal noise; C = 0) was 66% (33 out of 50 RNNs were trained100

within the first 20,000 trials). As the number of the noise channels (C) increased (see Methods), the101

training success rate also increased (see Supplementary Materials). When C = 10, all 50 RNNs were102

successfully trained to perform the task (dark green in Figure 1d). For the networks successfully103

trained, we did not see any significant difference in the number of training trials/epochs required104

among the four different noise conditions (C ∈ {0, 1, 5, 10}; Figure 1e). We observed a similar trend105

for a DMS task involving two delay intervals (see Methods; see Supplementary Materials).106

As shown in Figure 1d and 1e, the noise condition of C = 10 yielded the highest training107

efficiency. Importantly, the RNNs trained with this optimal noise structure were also more robust108

to perturbations of noisy input signals and internal dynamics (see Methods) and could perform the109

DMS task with longer delay periods as compared to the RNNs trained without any injection of110

internal noise (Figure 1f). These results suggest that the injected noise facilitated contextualized111

sensory encoding and led to a more robust representation of the input stimuli. To further investigate112

the impact of internal noise on the RNN dynamics, we applied the Potential of Heat-diffusion for113

Affinity-based Transition Embedding (PHATE; [19]) to the internal state trajectories of the RNNs114

trained with and without noise (see Methods). Applying this dimensionality reduction method to115

one example RNN realization from the baseline (C = 0) and noise (C = 10) conditions revealed116

distinct differences in the dynamics and representations of the four stimulus conditions (Figure 2a).117

In the RNN trained without noise, the neural representations of distinct stimulus conditions were118

found to intermingle in the lower-dimensional embedding space (Figure 2b). However, in the RNN119

trained with noise (Figure 2c), the dynamical structures corresponding to the four conditions were120
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clearly demarcated, indicating a more distinct representation of the stimuli. Notably, these neural121

trajectories exhibit meaningful and informative bifurcations that are driven by the temporal structure122

of the DMS task (as indicated by the black arrows in Figure 2c). Specifically, the first bifurcation123

occurs upon presentation of the first stimulus (at 250 ms), followed by a second bifurcation at the124

onset of the second stimulus (at 750 ms). These distinct bifurcations observed in the trajectories125

over time highlight the role of injected internal noise in facilitating contextualized sensory encoding126

and working memory computation, as evidenced by the clear segregation in the trajectory patterns.127

Noise modulates cell-type specific dynamics underlying working memory computation.128

Next, we investigated how the noise facilitated stable maintenance of stimulus information by129

examining the optimized model parameters. Given the previous studies highlighting the importance130

of inhibitory connections for information maintenance [9, 11–13], we hypothesized that the internal131

noise enhances working memory dynamics by selectively modulating inhibitory signaling. To test132

this, we first compared the inhibitory recurrent connection weights of the RNNs across different noise133

conditions (C = 0, 1, 5, 10). We did not observe any significant differences in the inhibitory weights134

(see Supplementary Materials). Similarly, the excitatory recurrent weights were also comparable135

across the noise conditions (see Supplementary Materials).136

As we did not observe any noticeable changes in the recurrent weight structure induced by137

the noise, we next analyzed the distribution of the optimized synaptic decay time constants (τ ).138

Interestingly, the synaptic decay constant distribution shifted toward the maximum value (125 ms;139

see Method) for the RNNs trained with noise (Figure 3a). Separating the distribution of the140

inhibitory units from the excitatory units revealed that the change in the decay dynamics was141

mainly attributable to the shift in the inhibitory synaptic decay dynamics (Figure 3c). In addition,142

the extent of the shift was correlated with the number of the noise channels (C): as C increased,143

the inhibitory synaptic signals decayed slower (see Supplementary Materials). We also observed144

an increase in the decay time constant in the excitatory population as the level of noise increased145

(Figure 3b). Notably, when comparing the changes in the population decay time constants between146

inhibitory and excitatory groups, the noise-induced slowing dynamics were more prominent in the147

inhibitory subpopulation (Ps < 0.001, H = 89.3; Kruskal-Wallis test with Dunn’s post hoc test).148

These findings are in line with recent modeling studies that emphasized the importance of slow149

inhibitory dynamics in maintaining information [13].150

Since the RNNs trained with noise showed an increase in the inhibitory synaptic decay time-151

constant, we explored whether increasing the inhibitory τ would enhance the robustness of RNNs152
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trained without noise. To test this hypothesis, we used the example RNN trained without noise153

(same network as the one shown in Figure 2b). Despite the low-dimensional representations of154

the stimulus conditions appearing blended (Figure 2b), the network exhibited high accuracy in155

performing the DMS task (Figure 3d). When τ for all the units in the network were increased to156

the maximum value (i.e., 125 ms), the network’s performance significantly decreased (Figure 3e).157

We also observed that increasing the inhibitory τ to 125 ms, while keeping the excitatory τ at its158

original value, impaired the task performance (Figure 3f). Together, these findings underscore the159

importance of incorporating internal noise during training to shape learned dynamics and enhance160

the network’s capacity to robustly perform working memory computations.161

Noise pushes model neurons with slow synaptic dynamics toward the edge of instability.162

Given that artificially increasing the inhibitory synaptic time constants in the RNNs trained without163

noise did not lead to improved memory maintenance (Figure 3f), we next focused on understanding164

the role of slow inhibitory signaling in the networks trained with noise. Operating under the165

assumption that a robust RNN generates stable and persistent activity patterns to maintain166

information, we performed linear stability analysis around x(t) ≈ x∗ during the delay window. This167

condition can be achieved when each unit in the network maintains relatively stable synaptic current168

activity throughout the delay window, i.e., x(t) ≈ x∗ at a given time point t during the delay period,169

where x∗ is the delay period steady state (see Supplementary Materials).170

For each first stimulus condition, s1 ∈ {−1,+1}, we studied the impact of a small instantaneous171

perturbation around the stimulus-specific delay period steady state (x∗
s1). In the absence of an172

input stimulus, we have the following equation (modified from Equation (1)):173

dxi
dt

=
1

τi

−xi +

N∑
j=1

wijσ(xj)

 ≡ Fi(x) (2)

Perturbing x∗
s1 by δxs1 would lead to174

dx

dt

∣∣∣
x∗
s1

+δxs1

= F (x∗
s1) + J(x∗

s1)δxs1 +O(δx2
s1) (3)

where J(x∗
s1) is the Jacobian matrix (see Methods). Since F (x∗

s1) ≈ 0, the perturbed dynamics175

(Equation (3)) can be re-written as176

dδxs1

dt
≈ J(x∗

s1)δxs1 , (4)
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with the Jacobian matrix written explicitly as177

Jij(x
∗
s1) =

1

τi
[−δij + wijσ(xj)(1− σ(xj)]

∣∣∣
x=x∗

s1

. (5)

Performing spectral decomposition on J and calculating the eigenvalues (λ) of the example178

RNN models employed in Figure 2 revealed that all eigenvalues of J exhibited negative real parts,179

indicating that the steady states (x∗
s1) are indeed stable against mild instantaneous perturbations180

(Figure 4a–h; see Methods). Interestingly, the RNN model trained with noise contained more181

slowly relaxing modes with oscillatory behaviors compared to the network trained without noise182

(i.e., eigenvalues with non-zero imaginary components shifted toward zero along the real axis in183

Figure 4e–h). Furthermore, these modes characterized by slow relaxation dynamics were found to184

exhibit de-localization, as evidenced by their low Inverse Participation Ratio (IPR) values (greener185

dots in Figure 4e–h and comparison of average IPR values between the two RNNs shown in Figure 4i;186

see Methods). Specifically, a larger IPR indicates a more localized perturbation that affects a smaller187

number of units, while a smaller IPR corresponds to a more delocalized perturbation affecting a188

larger number of units. In other words, RNNs trained with noise are more robust compared to the189

RNNs trained without noise, as they require sustained perturbations to a larger number of units for190

the steady state to be destabilized.191

In order to further characterize the slow relaxation modes observed in the RNN trained with192

noise, we first identified the units involved in the left eigenvectors corresponding to the top ten193

eigenvalues (i.e., ten least negative eigenvalues) for each RNN model (see Methods). We categorize194

the units with non-zero amplitudes in the top ten eigenvectors as dominant units, while the units195

with zero amplitudes are referred to as non-dominant units. Notably, in both RNN models (trained196

without and with noise), the dominant units were associated with significantly larger synaptic decay197

time constants compared to the non-dominant units (Figure 4j and 4k). Furthermore, the synaptic198

decay dynamics of the dominant units in the RNNs trained with noise were significantly slower than199

the dynamics of the dominant units in the networks trained without noise (P < 0.001, two-sided200

Wilcoxon rank-sum test).201

These findings suggest that the injection of noise during training resulted in an increased202

proportion of units exhibiting slower synaptic dynamics (i.e., dominant units). In addition, this203

noise-induced effect pushed the top eigenmodes composed of these units closer to the edge of204

instability (critical boundary between stable and unstable behavior). Next, we analyzed the firing205

rate activities of the dominant and non-dominant units in the two models. As shown in Figure 5a,206
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the firing rate timecourses of the dominant units (dark purple) in the RNN trained without noise207

were not significantly different from those of the non-dominant units (light purple) during the delay208

period following the first stimulus presentation. In contrast, the dominant units in the RNN example209

model trained with noise showed elevated firing rates throughout the delay period (Figure 5b),210

implying that these units sustain the stimulus information through persistent firing. Performing the211

above analysis on all trained models revealed similar findings (Figure 5c and 5d). By comparing212

the average delay period firing rate of the dominant units in the two models, we observed that the213

dominant units in the RNNs trained with noise exhibited significantly higher activity compared to214

the dominant units in the noise-free RNNs (Figure 5e). No significant differences were observed in215

the average delay period activity of the non-dominant units between the two models (Figure 5f).216

These findings strongly suggest that training with noise induced the top eigenmodes to contain units217

with slow synaptic dynamics conducive for sustaining information for extended periods.218

Robustness and increased efficiency due to intrinsic noise are specific to working memory219

computations. Finally, we asked if the modulatory effects of noise during training were specific220

to working memory dynamics. To address this question, we devised two cognitive tasks that do221

not require maintenance of sensory information over time, namely two-alternative forced choice222

(AFC) task and context-dependent sensory integration (CTX) task (see Methods). In the AFC223

task (Figure 6a), the RNN model had to generate an output signal that indicated whether a target224

sensory signal was present. The CTX task is a more challenging variant of the AFC task, where the225

model was trained to produce an output that corresponded to one of the two input modalities as226

determined by a context signal [14] (Figure 6c). As these task paradigms do not involve any delay227

interval, the model only requires minimal information maintenance, if any, to perform well on these228

tasks.229

Our findings demonstrated that the RNN models were able to perform these non-working memory230

tasks well without any noise, and that adding noise during training did not further improve training231

efficiency for either task. In fact, it took longer for models to reach successful training criteria232

when noise was added during training for both sensory integration and context-dependent sensory233

integration tasks (Ps < 0.001 for both tasks). To investigate if noise modulated the temporal234

dynamics on these tasks, we analyzed synaptic decay time constants of all the units as well as235

separately for excitatory and inhibitory units. Our results revealed no difference in the synaptic236

decay dynamics in the inhibitory units from the models that trained without noise and those trained237

with noise (Figure 6b and d). These findings suggest that the slow synaptic decay dynamics induced238
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by noise are specific to working memory functioning where robust information maintenance is needed239

to ensure successful performance. Furthermore, the stability and perturbation analyses of the CTX240

RNNs revealed that the networks trained with noise were not more robust compared to the models241

trained without noise (see Supplementary Materials).242

Discussion243

In this study, we demonstrated that introducing random noise into firing-rate RNNs allowed the244

networks to achieve efficient and stable memory maintenance critical for performing working memory245

tasks. We also showed that the models trained with noise were able to generalize to sustain stimulus-246

related information longer than the delay period used during training. Further analyses uncovered247

that the introduction of noise led to the emergence of inhibitory units with slow synaptic decay248

dynamics, which were predominantly associated with dominant eigenmodes situated near the edge249

of instability. These eigenmodes were critical for maintaining information during the delay period of250

the working memory task. In addition, these effects were specific to the models trained to perform251

working memory task, suggesting that noise-induced changes were specific to working memory.252

Our findings are closely related to the previous studies that reported the benefits of random neural253

noise ubiquitous in the cortex in memory recall and associative learning [20, 21]. For example, recent254

experiments showed that a high level of noise and randomness in the olfactory system (i.e., random255

and seemingly unstructured networks in the piriform cortex) allows for not only flexible encoding of256

sensory information but also maintenance of the encoded information [4, 22–24]. Consistent with257

this line of work, the injected noise in our RNN models during the training helped stabilize the258

encoding of sensory space and thus enhanced learning efficiency. Taken together, our study provides259

an easy-to-use framework for understanding how internal noise influences information maintenance260

and learning dynamics when performing working memory cognitive tasks.261

One limitation of the present study is the lack of comparisons with RNNs trained with learning262

algorithms that are not based on gradient-descent optimization. One such algorithm is First-Order263

Reduced and Controlled Error (FORCE) learning which has been employed to train rate and spiking264

RNNs [25, 26]. Due to the nature of the method, it is currently not possible to train the synaptic265

decay time constant term using FORCE training, making the comparison with our models difficult.266

Reinforcement learning is another learning algorithm that can be employed to train biologically267

realistic RNNs [27].268

Even though we showed that increasing the number of noise channels could lead to heterogeneous269
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synaptic decay time constants, it is unclear why only inhibitory synaptic decay constants undergo270

significant changes for working memory tasks. Future work will focus on better understanding the271

theoretical and computational basis for the emergence of slow inhibitory synaptic dynamics.272

By interpreting the concept of noise in machine learning within the context of biology, the273

present study proposes a general framework that bridges recent advances in machine intelligence274

with empirical findings in neuroscience. Our approach includes introducing internal noise into a275

biologically realistic artificial neural network model during training to simulate cortical noise and276

systematically evaluating its effects on model dynamics and performance under different testing277

conditions. Elucidating the computational underpinnings of how cortical noise modulates cognitive278

functions will help us better understand how such processes are disrupted in neuropsychiatric279

conditions such as schizophrenia and autism spectrum disorder. Finally, our framework has the280

potential to shed light on the fundamental mechanisms that may give rise to the therapeutic effects281

of deep brain stimulation (DBS), a neuromodulation technique that entails the targeted delivery of282

electrical stimulation to specific brain regions.283
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Methods284

Continuous-rate recurrent neural network (RNN) model. We constructed our biologically

realistic RNN model based on Equation (1). All the units in the network are governed by the

following equations:

τi
dxi
dt

= −xi(t) +
N∑
j=1

wijrj(t) + (wnoise)iψ(t) + (win)iu(t) + ξi(t) (6)

ri(t) = σ(xi(t)) =
1

1 + exp(−xi(t))
(7)

o(t) = woutr(t) + b (8)

where τi is the synaptic decay time constant of unit i, xi is the synaptic current variable of unit i,285

wij is the synaptic weight from unit j to unit i, and ri is the firing rate estimate of unit i (estimated286

by using the sigmoid transfer function in Equation (7)). Each model contains 200 units. To adhere287

to previous empirical observations regarding the proportion of excitatory and inhibitory units in the288

brain, we constructed each RNN with a composition of 80% excitatory and 20% inhibitory units289

(i.e., E-I ratio of 80/20; [28–30]). The model receives time-varying input composed of U channels290

of signals over T time steps (u ∈ RU×T ) via the input weight matrix, win ∈ RN×U ((win)i refers291

to the input weight matrix for neuron i). The input signal (u) represents task-specific incoming292

sensory information. The network also receives random noise via wnoise ∈ RN×C where C is the293

number of independent noise signals in ψ ∈ RC×T . Each signal in ψ was drawn from the standard294

normal Gaussian distribution (i.e., zero mean and unit variance). We considered C ∈ {0, 1, 5, 10}.295

The sensory noise (ξ ∈ RN×T ) was modeled with a Gaussian noise, uncorrelated in time, with zero296

mean and variance of 0.01. The output (o) of the network was computed as a weighted average of297

the activities of the units via the readout weights (wout) and the constant term (b).298

The dynamics were discretized using the first-order Euler approximation method and with the299

step size (∆t) of 5 ms:300

xt =

(
1− ∆t

τ

)
xt−1 +

∆t

τ
(wrt−1 +wnoiseψt−1 +winut−1) + ξt−1 (9)

where xt = x(t) and 1/τ denotes a diagonal matrix whose ith diagonal element is 1/τi. The network301

was trained using backpropagation through time (BPTT). The trainable parameters of the model302

included w, wnoise, τ , wout, and b. To further impose biological constraints, we incorporated Dale’s303

principle (separate populations for excitatory and inhibitory units) using methods similar to those304

implemented in previous studies [31, 32].305
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Instead of fixing the synaptic decay constant (τ ) to a fixed value for all the units, we optimized

the parameter for each unit using a similar algorithm similar to the method described in Kim et al.

[32]. The parameter was trained to range from 20 ms to 125 ms to model heterogeneous synaptic

dynamics of different receptors in the cortex [33, 34]. We initialized the synaptic decay time constant

parameter (τ ) using

τi = σ(N (0, 1))τstep + τmin,

where σ(·) is the sigmoid function and N (0, 1) refers to the standard normal distribution. τmin =306

20 ms and τstep = 105 ms were used to constrain the parameter to range from 20 ms to 125 ms. The307

gradient of the cost function with respect to the synaptic decay term is derived in Supplementary308

Information.309

The schematic diagram of the model is shown in Figure 1c. All the models were implemented310

with TensorFlow 1.10.0 and trained on NVIDIA GPUs (Quadro P4000 and Quadro RTX 4000).311

Delay match-to-sample (DMS) task. Two match-to-sample (DMS) tasks were used to train312

our RNN model and assess how the noise influenced the robustness of memory maintenance in the313

network. Both tasks involved two sequential stimuli (each lasting 250 ms) separated by a delay314

interval of 250 ms. The first stimulus was presented after a fixation period of 250 ms. During315

the stimulus window, the input signal (u) was set to either -1 or +1 (Figure 1a). If the signs of316

the two sequential stimuli matched (i.e., stimulus condition 1: s = (+1/+ 1); stimulus condition317

4: s = (−1/ − 1); Figure 3a), the model was trained to produce an output signal approaching318

+1. When the signs were opposite (i.e., stimulus condition 2: s = (+1/ − 1); stimulus condition319

3: s = (−1/+ 1); Figure 3a), the model had to produce an output signal approaching -1. For the320

first task, the model had to respond immediately after the second stimulus (Figure 1c). A second321

delay period of 250 ms was added after the second stimulus for the second task (see Supplementary322

Materials). Due to the two delay periods, the second DMS task is considered a more challenging323

working memory task than the first task. The primary focus of the present study is the one-delay324

DMS task, and all the DMS findings presented in the main text are exclusively derived from this325

specific paradigm.326

Training protocol. Our model training was deemed successful if the following two criteria were327

satisfied within the first 20,000 epochs:328

• Loss value (defined as the root mean squared error between the network output and target329

signals) < 7330
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• Task performance (defined as the average accuracy of the network output over 100 randomly331

generated testing trials) > 95%332

If the network did not meet the criteria within the first 20,000 epochs, the training was terminated.333

For each task and each value of C ∈ {0, 1, 5, 10}, we trained 50 RNNs using the above strategy. We334

considered the RNNs trained with C = 0 (i.e., without any noise) as the baseline model.335

Testing protocol. To evaluate the robustness and stability of the trained RNNs, we devised a336

series of testing conditions where different aspects of the one-delay DMS task (Figure 1f) were337

systematically manipulated. During testing, internal noise and noisy input signals were introduced338

to the trained networks. For each successfully trained RNN, we generated wnoise and ψ as identically339

distributed Gaussian random variables to deliver random noise during testing.340

For the noisy input signal, white-noise signals (drawn from the standard normal distribution)341

were added to the sensory signals (u) to mimic stimulus-related noise. Additionally, we also varied342

the duration of the delay interval to range from 250 ms to 1250 ms (with a 500-ms increment) to343

assess the stability of memory maintenance (Figure 1f).344

Working memory-independent tasks. In addition to the DMS tasks that require memory345

maintenance over time, we designed two additional cognitive tasks that do not involve working346

memory computation. By comparing the dynamics of the RNNs between the DMS tasks and347

these working memory-independent tasks, we were able to identify the specific network dynamics348

associated with working memory computation.349

For the two-alternative forced choice (AFC) task, our RNN model was trained to produce an350

output signal approaching +1 when a stimulus was presented (250 ms in duration), following a351

fixation period of 250 ms. For a trial where a stimulus was not presented, the model had to maintain352

the output signal close to 0 (Figure 6a). For the context-dependent sensory integration (CTX) task,353

the model received two streams of noisy stimulus signals (input modality 1 and input modality 2;354

(Figure 6c) along with a constant-valued, context signal which informed the model which sensory355

input modality was relevant on each trial. A random Gaussian time series signal with zero mean and356

unit variance was used to simulate a noisy sensory input signal. Each time series signal was then357

shifted by a positive or negative constant offset value to encode sensory evidence towards either the358

positive or negative choice, respectively. The magnitude of the offset value determined the degree of359

evidence for the specific choice (positive/negative) represented in the relevant noisy input signal.360

The network had to generate an output signal approaching +1 or -1 in response to the cued input361

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


signal with a positive or negative mean, respectively. Thus, if the cued input signal was generated362

with a positive offset value, the network was expected to produce an output that approached +1363

irrespective of the mean of the irrelevant input signal. For both the AFC and CTX tasks, the364

training termination criteria were similar to those used for the DMS (see Training protocol).365

Visualization of network dynamics. To visualize the neural dynamics of working memory366

computation as a function of injected internal noise during training, we employed the Potential of367

Heat-diffusion for Affinity-based Transition Embedding (PHATE) algorithm [19]. This dimensionality368

reduction technique is a manifold learning algorithm that enables faithful visualization of high-369

dimensional data while best preserving the global data structure. Two example RNN models370

successfully trained either without (C = 0) or with noise (C = 10) were presented with a simulation371

of 100 DMS test trials (25 from each of the four stimulus conditions). The delay interval was fixed372

at 250 ms, such that the temporal structure of the testing phase mirrored that of the training373

environment (see Figure 1c).374

We then used the resulting neural activity data from each model type during this testing phase375

as input data for PHATE in order to compute the low-dimensional embedding corresponding to376

the neural activity of the RNNs trained with and without noise. Specifically, for each of the RNNs377

trained under each noise condition (without or with noise), the diffusion operator matrix was first378

calculated using pairwise similarities among individual points in the input network activity time379

series (downsampled by a factor of 5). This matrix was raised to a power exponent to amplify the380

local structure while preserving the global structure of the input data. The resulting matrix was381

then used to generate the low-dimensional embedding that captures the neural dynamics of the382

input data.383

To characterize potential topological patterns within the neural dynamics associated with384

each RNN, clustering was performed on this PHATE-generated embedding. Specifically, a K-385

means clustering algorithm was used to partition the data into distinct groups based on their386

spatial proximity in the low-dimensional space. For visualization purposes, a 3-dimensional PHATE387

embedding of a sample model from each noise condition (i.e., without noise and with noise; Figure 2b-388

c) was plotted and colored by stimulus conditions (Figure 2a). Black arrows were also included to389

indicate the temporal evolution of the neural trajectories over the trial duration. These embeddings390

provided insights into the temporal structure underlying working memory computation associated391

with the network dynamics that resulted from the incorporation of internal noise during training.392
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Network stability analysis. To investigate the neural dynamics associated with memory main-393

tenance, we employed linear stability analysis. Specifically, we performed this analysis on the394

synaptic currents of the RNNs successfully trained without or with noise during the delay period395

in the DMS task (i.e., from the offset of the first stimulus to the onset of the second stimulus396

(see Figure 1c). Throughout this window, the network activities exhibited consistent steady-state397

patterns, as illustrated in Supplementary Materials.398

For each first stimulus condition s1 ∈ {−1,+1}, we defined the steady-state synaptic current399

variable (x∗
s1) by first averaging xs1(t) across time within the delay window and then averaging across400

multiple trials (50 trials per each first stimulus condition). The impact of a small instantaneous401

perturbation around the delay period steady state x∗
s1 on the synaptic current patterns is determined402

by the deterministic dynamics of Equation (1) in the absence of an input stimulus:403

dxi
dt

=
1

τi

−xi +
N∑
j=1

wijσ(xj)

 ≡ Fi(x). (2)

For a weak perturbation δxs1 around x∗
s1 , the linearized approximation of the perturbed dynamics404

is dx
dt

∣∣∣
x∗
s1

+δxs1

= F (x∗
s1) + J(x∗

s1)δxs1 +O(δx2
s1), where J(x∗

s1) is the Jacobian matrix Jij(x
∗
s1) =405

∂Fi
∂xj

∣∣∣
x=x∗

s1

. By the assumption of the late-time steady state x∗
s1 , which is also consistent with the406

numerical results, we have F (x∗
s1) ≈ 0. Thus, the linearized dynamics of the perturbation δxs1 can407

be written as408

dδxs1

dt
≈ J(x∗

s1)δxs1 , (4)

with the Jacobian matrix written explicitly as409

Jij(x
∗
s1) =

1

τi
[−δij + wijσ(xj)(1− σ(xj)]

∣∣∣
x=x∗

s1

. (5)

Network responses to weak perturbations around the steady states can now be systematically410

explored by the spectral analysis (eigenvalues and eigenvectors) of the Jacobian in (5).411

For clarity, we will add the subscript s only when the stimuli-specific statement is needed. Also,412

J will denote the Jacobian evaluated at the steady state of interest. In this notation, given the413

linearized perturbed dynamics of (4), the initial perturbation δx0 will evolve into the response at414

time t, δx(t), that can be studied via the spectral decomposition of J [35] as415

δx(t) =
N∑

n=1

eλntψR
n

(
ψL

n δx0

)
, (10)
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where ψL
n and ψR

n are, respectively, the left and the right eigenvector of J with the eigenvalue λn.416

Notably, our trained RNNs exhibit highly asymmetric w such that the Jacobian (5) is non-hermitian,417

leading to distinct left and right eigenvectors.418

Eq. (10) states that an initial perturbation δx0 via ψL
n will contribute to a response ψR

n , such419

that the response will grow (decay) exponentially on the timescale of |1/Re (λn)| when Re (λn) > 0420

(Re (λn) < 0).421

Since the dominant responses to a perturbation depend on the overlap between the perturbation422

and the top-most left eigenvectors
(
ψL

n δx0

)
, the non-zero elements of the top-most left eigenvectors423

determine the spatial extent of perturbation required to significantly influence the system’s response.424

Along this line, the larger the number of non-zero elements in the top-most left eigenvectors, the425

larger the number of units that need to be perturbed to destabilize the late-time steady states.426

We employ the Inverse Participation Ratio (IPR), a measure commonly used in the study of427

localization phenomena in statistical physics [36], to reflect the number of units participating in the428

perturbation. The IPR provides valuable insights into the localization of perturbations by indicating429

the number of units involved in the perturbation process. In particular,430

IPR(λn) =

∑N
i=1 |(ψn)i|4(∑N
i=1 |(ψn)i|2

)2 . (11)

The IPR of the left and the right eigenvector will be denoted by IPRL and IPRR respectively, though431

we will focus on IPRL as we are interested in the size of the neural subpopulations participating432

in the perturbation. Note that the maximum and the minimum values of IPRL are attained at,433

respectively, 1 when only a single neuron is non-zero, and 1/N when all the units are uniformly434

activated. A larger or a smaller value of IPRL indicates that the perturbation is localized around a435

smaller number of units, or extended over a larger number of units, respectively.436

Perturbation analysis. For the example models shown in Figure 2, we first performed the network437

stability analysis described above. We then ranked the eigenvalues (λ) based on their real values438

and identified the corresponding left eigenvectors (ψL
n ) for the top ten eigenvalues. For each of the439

top ten eigenvalues, we also computed the associated IPRL (see Supplementary Materials). Next, we440

perturbed the set of units that contributed to each of the ten left eigenvectors during the response441

window to assess the network’s sensitivity to perturbation (see Supplementary Materials).442

For each of the ten perturbations, the network’s task performance was computed (average443

task performance shown in Supplementary Materials). To determine the task performance per444
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IPRL (PIPR), we divided the IPR values by the corresponding perturbed task performance (see445

Supplementary Materials).446

Statistical analyses. All the RNNs trained in the present study were randomly initialized (with447

random seeds) before training. Throughout this study, we employed non-parametric statistical448

methods to assess statistically significant differences between groups. For comparing differences449

between two groups (e.g., the log10 IPRL of RNNs trained with or without noise), we used two-sided450

Wilcoxon rank-sum or signed-rank test. For comparing morethan two groups (e.g., the synaptic decay451

time constants associated with RNNs trained with varying degree of noise), we used Kruskal-Wallis452

test with Dunn’s post hoc test to correct for multiple comparisons.453
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Fig. 1 | Delayed match-to-sample (DMS) task and model schematic. a, A schematic diagram

of a Delayed match-to-sample (DMS) task with two sequential stimuli separated by a delay interval. b,

The number of trials/epochs needed to train continuous-variable RNNs increases exponentially as the delay

interval increases. For each delay duration condition, we trained 50 firing-rate RNNs to perform the DMS

task shown in a. The maximum number of trials/epochs was set to 20,000 trials for computational efficiency

(all Ps < 0.001, two-sided Wilcoxon rank-sum test). c, A schematic diagram illustrates the paradigm used to

trained our RNN model on the DMS task in which one delay was present. We introduced and systematically

varied the amount of noise in the RNN network to study the effects of noise on memory maintenance in a

biologically constrained neural network model. The model contained excitatory (red circles) and inhibitory

(blue circles). The dashed lines represent connections that were optimized using backpropagation. d, Training

performance of the RNN models on the DMS task. RNN models with varying amount of noise (i.e., 0, 1, 5,

and 10 noise channels) were trained to perform this task. Training success rate was measured as the number

of successfully trained RNNs (out of 50 RNNs). e, The average number of trials required to reach the training

criteria. f, Testing performance of the RNN models on the DMS task. RNNs successfully trained either

without noise (0 noise channels; n = 33) or with 10 noise channels (n = 50) were tested on the DMS task in

which both internal noise and noisy input signals were introduced. We also varied the delay duration of these

testing trials to range from 250 ms, 750 ms, and 1250 ms. For each testing condition, average accuracy of the

trained RNN models is shown. Across all conditions, RNNs trained with no noise had lower accuracy than

those trained with 10 noise channels (all Ps < 0.01, two-sided Wilcoxon rank-sum test). Boxplot: central

lines, median; bottom and top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range; outliers

are not plotted.
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Fig. 2 | Neural representations of each stimulus condition on the DMS task. a, A schematic of

the four stimulus conditions used in the delayed match-to-sample (DMS) task. For stimulus condition 1

(s = +1/+1) and 4 (s = −1/− 1), the model had to generate an output signal approaching +1. For stimulus

condition 2 (s = +1/ − 1) and 3 (s = −1/+ 1), the model had to produce an output signal approaching

-1. b, PHATE-embedding computed from network activity on testing trials (see Methods) of an example

RNN model trained without noise. The embedding based on network activity from the onset of the first

stimulus is plotted. c, PHATE-embedding extracted from the network activity during testing of a sample

RNN model that was trained with noise (C = 10). The embedding based on network activity from the

onset of the first stimulus is plotted. Black arrows indicate temporal progression of the PHATE trajectories

over the trial duration. Trajectories within the PHATE-embedding are illustrated based on the stimulus

conditions from which the data were extracted. While task-based clusters can be clearly observed in the

PHATE-embedding of the RNN model trained with noise (c), such patterns are not present in the embedding

of the model trained without noise (b). Importantly, the task-informed clustering associated with the model

trained with noise exhibits temporal dynamics that are tightly linked to the onsets of the first and second

stimulus such that the first and second branching emerged at the presentation onset of the first and second

stimulus, respectively.
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Fig. 3 | Influence of noise on cell-type specific temporal dynamics. Comparison of synaptic decay

time constants of RNN models trained on the DMS task with varying amount of noise. a, For each noise

condition, synaptic decay time constants of successfully trained models are reported for all units (n = 33,

40, 46, 50 for the noise conditions of 0, 1, 5, and 10 channels, respectively). Overall, injection of random

noise during training increased synaptic decay time constants averaged across all units in the networks (Ps <

0.001, H = 113.8; Kruskal-Wallis test with Dunn’s post hoc test). b, Comparison of synaptic decay time

constants for excitatory units of the trained RNN models (Ps < 0.01, H = 52.5; Kruskal-Wallis test with

Dunn’s post hoc test). c, Comparison of synaptic decay time constants for inhibitory units of the trained

RNN models (Ps < 0.001, H = 120.3; Kruskal-Wallis test with Dunn’s post hoc test). Gray horizontal lines,

mean. d, Network output of a sample RNN model successfully trained without noise to perform the DMS

task. The model can differentiate among the four possible stimulus conditions and generate appropriate

responses based on the maintained memory (+1 when s = +1/+ 1 (dark green) or −1/− 1 (dark purple)

and -1 when s = +1/− 1 (light green) or −1/+1 (light purple)). e, Network output of a RNN model trained

without noise where synaptic decay time constants of all units were set to 125 ms (maximal τ ; see Methods).

The model failed to maintain memory and generate correct responses. f, Network output of a RNN model

trained without noise where synaptic decay time constants of inhibitory units were fixed at 125 ms. The

overall performance is higher than that of (b), further confirming the differential effect of noise on inhibitory

circuits.
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Fig. 4 | Noise-induced network spectral properties. Spectra of the Jacobian (J) extracted from the

network activity during the delay window. a and b, Spectra of a sample RNN model trained without noise

(same RNN as Figure 2b) during the delay period following the first stimulus presentation (s1 ∈ {+1,−1}).

c and d, spectra of a sample RNN model trained with noise (C = 10; same network as Figure 2c) during

the delay period following the first stimulus presentation (s1 ∈ {+1,−1}). For both noise conditions, we

observed stable steady states x∗
s1 as evident from the real parts of all the eigenvalues being negative. For the

RNN trained with noise, the eigenvalues with non-zero imaginary parts shifted to the right (toward zero

along the real axis) and were associated with lower Inverse Participation Ratio (IPR) values (c and d). i,

Average IPR values from the RNN trained without noise were significantly higher (i.e., more localized) than

those from the model trained with noise. j, Average synaptic decay time constants of the dominant (non-zero

elements in the top ten eigenvectors) and non-dominant (zero elements in the top ten eigenvectors) units

from all the RNNs trained without noise. k, Average synaptic decay time constants of the dominant and

non-dominant units from all the RNNs trained with noise. Boxplot: central lines, median; bottom and top

edges, lower and upper quartiles; whiskers, 1.5 × interquartile range; outliers are not plotted. P < 0.001,

two-sided Wilcoxon rank-sum test.
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Fig. 5 | Persistent activity of dominant units from RNNs trained with noise. a, Average firing rate

timecourses for the dominant (dark purple) and non-dominant (light purple) units from the example RNN

model trained without noise (same RNN as the one used for Figure 2b). b, Average firing rate timecourses for

the dominant (dark purple) and non-dominant (light purple) units from the example RNN model trained with

noise (same RNN as the one used for Figure 2c). c, Similar to a but averaged across all RNNs successfully

trained (n = 33 RNNs). d, Similar to b but averaged across all RNNs successfully trained (n = 50 RNNs).

e, Average firing rate activity during the delay period for the dominant units from RNNs trained without

noise (gray) and with noise (dark green). f, Average firing rate activity during the delay period for the

non-dominant units from RNNs trained without noise (gray) and with noise (dark green). Boxplot: central

lines, median; bottom and top edges, lower and upper quartiles; whiskers, 1.5 × interquartile range; outliers

are not plotted. P < 0.001, two-sided Wilcoxon rank-sum test.
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Fig. 6 | Network functional motifs underlying working memory-independent computation.

Schematics diagrams illustrating working memory-independent tasks and the corresponding network dynamics

of the RNN models successfully trained on these tasks. a, Two-alternative forced choice (AFC) task, in which

the RNN modes were trained to produce an output indicating the presence of a brief input pulse. b, For the

inhibitory units from the RNNs trained on the AFC task, synaptic decay time constants were similar across

all noise conditions. c, Context-dependent sensory integration (CTX) task, where the RNN models were

trained to generate an output based on the identity of a sensory stimulus whose relevance was determined by

an explicit context cue. d, Across all the noise conditions, the inhibitory units from the networks trained on

the sensory integration task exhibited similar synaptic decay time constants. e, For the CTX task, similar

PIPR was observed for a sample RNN model trained without and with noise (C = 10). f, Task performance

on the CTX task after perturbation was similar regardless of whether intrinsic noise was introduced during

training. Gray horizontal lines, mean.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


References454

[1] Simon Musall, Matthew T Kaufman, Ashley L Juavinett, Steven Gluf, and Anne K Churchland. Single-455

trial neural dynamics are dominated by richly varied movements. Nature neuroscience, 22(10):1677–1686,456

2019.457

[2] Carsen Stringer, Marius Pachitariu, Nicholas Steinmetz, Charu Bai Reddy, Matteo Carandini, and458

Kenneth D Harris. Spontaneous behaviors drive multidimensional, brainwide activity. Science, 364459

(6437):eaav7893, 2019.460

[3] Carsen Stringer, Michalis Michaelos, Dmitri Tsyboulski, Sarah E Lindo, and Marius Pachitariu. High-461

precision coding in visual cortex. Cell, 184(10):2767–2778, 2021.462

[4] Sophie JC Caron, Vanessa Ruta, LF Abbott, and Richard Axel. Random convergence of olfactory463

inputs in the drosophila mushroom body. Nature, 497(7447):113–117, 2013.464

[5] Adji B Dieng, Jaan Altosaar, Rajesh Ranganath, and David M Blei. Noise-based regularizers for465

recurrent neural networks. 2018.466

[6] Alexander Camuto, Matthew Willetts, Umut Simsekli, Stephen J Roberts, and Chris C Holmes. Explicit467

regularisation in gaussian noise injections. Advances in Neural Information Processing Systems, 33:468

16603–16614, 2020.469

[7] Soon Hoe Lim, N Benjamin Erichson, Liam Hodgkinson, and Michael W Mahoney. Noisy recurrent470

neural networks. Advances in Neural Information Processing Systems, 34, 2021.471

[8] Guy Blanc, Neha Gupta, Gregory Valiant, and Paul Valiant. Implicit regularization for deep neural472

networks driven by an ornstein-uhlenbeck like process. In Conference on learning theory, pages 483–513.473

PMLR, 2020.474

[9] Sabine Krabbe, Enrica Paradiso, Simon d’ Aquin, Yael Bitterman, Julien Courtin, Chun Xu, Keisuke475

Yonehara, Milica Markovic, Christian Müller, Tobias Eichlisberger, and et al. Adaptive disinhibitory476

gating by VIP interneurons permits associative learning. Nature Neuroscience, 22(11):1834–1843, Oct477

2019.478

[10] Kirstie A. Cummings and Roger L. Clem. Prefrontal somatostatin interneurons encode fear memory.479

Nature Neuroscience, 23(1):61–74, 2019.480

[11] Gianluigi Mongillo, Simon Rumpel, and Yonatan Loewenstein. Inhibitory connectivity defines the realm481

of excitatory plasticity. Nature Neuroscience, 21(10):1463–1470, Sep 2018.482

[12] Haifeng Xu, Ling Liu, Yuanyuan Tian, Jun Wang, Jie Li, Junqiang Zheng, Hongfei Zhao, Miao He,483

Tian-Le Xu, Shumin Duan, and et al. A disinhibitory microcircuit mediates conditioned social fear in484

the prefrontal cortex. Neuron, 102(3):668–682, 2019.485

[13] Robert Kim and Terrence J Sejnowski. Strong inhibitory signaling underlies stable temporal dynamics486

and working memory in spiking neural networks. Nature Neuroscience, 24(1):129–139, 2021.487

[14] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent488

computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.489

24

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


[15] H Francis Song, Guangyu R Yang, and Xiao-Jing Wang. Training excitatory-inhibitory recurrent neural490

networks for cognitive tasks: a simple and flexible framework. PLoS computational biology, 12(2):491

e1004792, 2016.492

[16] Thomas Miconi. Biologically plausible learning in recurrent neural networks reproduces neural dynamics493

observed during cognitive tasks. Elife, 6:e20899, 2017.494

[17] Guangyu Robert Yang, Madhura R Joglekar, H Francis Song, William T Newsome, and Xiao-Jing Wang.495

Task representations in neural networks trained to perform many cognitive tasks. Nature neuroscience,496

22(2):297–306, 2019.497

[18] P. J. Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the IEEE,498

78(10):1550–1560, 1990.499

[19] Kevin R Moon, David van Dijk, Zheng Wang, William Chen, Matthew J Hirn, Ronald R Coifman,500

Natalia B Ivanova, Guy Wolf, and Smita Krishnaswamy. Phate: a dimensionality reduction method for501

visualizing trajectory structures in high-dimensional biological data. BioRxiv, 120378, 2017.502

[20] Chi Zhang, Danke Zhang, and Armen Stepanyants. Noise in neurons and synapses enables reliable503

associative memory storage in local cortical circuits. eNeuro, 8(1), 2021.504

[21] Mark D McDonnell and Lawrence M Ward. The benefits of noise in neural systems: bridging theory505

and experiment. Nature Reviews Neuroscience, 12(7):415–425, 2011.506

[22] Stan L. Pashkovski, Giuliano Iurilli, David Brann, Daniel Chicharro, Kristen Drummey, Kevin M.507

Franks, Stefano Panzeri, and Sandeep Robert Datta. Structure and flexibility in cortical representations508

of odour space. Nature, 583(7815):253–258, 2020.509

[23] Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and LF Abbott.510

Optimal degrees of synaptic connectivity. Neuron, 93(5):1153–1164, 2017.511

[24] Xiaoxing Zhang, Wenjun Yan, Wenliang Wang, Hongmei Fan, Ruiqing Hou, Yulei Chen, Zhaoqin Chen,512

Chaofan Ge, Shumin Duan, Albert Compte, and Chengyu T Li. Active information maintenance in513

working memory by a sensory cortex. eLife, 8:e43191, jun 2019.514

[25] David Sussillo and L.F. Abbott. Generating coherent patterns of activity from chaotic neural networks.515

Neuron, 63(4):544 – 557, 2009.516

[26] Wilten Nicola and Claudia Clopath. Supervised learning in spiking neural networks with force training.517

Nature Communications, 8:2208, Dec 2017.518

[27] H. Francis Song, Guangyu R. Yang, and Xiao-Jing Wang. Training excitatory-inhibitory recurrent519

neural networks for cognitive tasks: A simple and flexible framework. PLOS Computational Biology, 12520

(2):1–30, 02 2016.521

[28] Stewart H Hendry, HD Schwark, EG Jones, and J Yan. Numbers and proportions of gaba-immunoreactive522

neurons in different areas of monkey cerebral cortex. Journal of Neuroscience, 7(5):1503–1519, 1987.523

[29] Arish Alreja, Ilya Nemenman, and Christopher J Rozell. Constrained brain volume in an efficient524

coding model explains the fraction of excitatory and inhibitory neurons in sensory cortices. PLOS525

Computational Biology, 18(1):e1009642, 2022.526

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


[30] Chet C Sherwood, Mary Ann Raghanti, Cheryl D Stimpson, Christopher J Bonar, Alexandra A de Sousa,527

Todd M Preuss, and Patrick R Hof. Scaling of inhibitory interneurons in areas v1 and v2 of anthropoid528

primates as revealed by calcium-binding protein immunohistochemistry. Brain, Behavior and Evolution,529

69(3):176–195, 2007.530

[31] H. Francis Song, Guangyu R. Yang, and Xiao-Jing Wang. Training excitatory-inhibitory recurrent531

neural networks for cognitive tasks: A simple and flexible framework. PLOS Computational Biology, 12532

(2):e1004792, 2016.533

[32] Robert Kim, Yinghao Li, and Terrence J Sejnowski. Simple framework for constructing functional534

spiking recurrent neural networks. Proceedings of the national academy of sciences, 116(45):22811–22820,535

2019.536

[33] Renato Duarte, Alexander Seeholzer, Karl Zilles, and Abigail Morrison. Synaptic patterning and the537

timescales of cortical dynamics. Current Opinion in Neurobiology, 43:156–165, 2017.538

[34] Anthony M Zador and Lynn E Dobrunz. Dynamic synapses in the cortex. Neuron, 19(1):1–4, 1997.539

[35] Fernando Lucas Metz, Izaak Neri, and Tim Rogers. Spectral theory of sparse non-hermitian random540

matrices. Journal of Physics A: Mathematical and Theoretical, 52(43):434003, oct 2019. doi:10.1088/1751-541

8121/ab1ce0. URL https://dx.doi.org/10.1088/1751-8121/ab1ce0.542

[36] Elihu Abrahams. 50 Years of Anderson Localization. WORLD SCIENTIFIC, 2010. doi:10.1142/7663.543

URL https://www.worldscientific.com/doi/abs/10.1142/7663.544

26

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

http://dx.doi.org/10.1088/1751-8121/ab1ce0
http://dx.doi.org/10.1088/1751-8121/ab1ce0
http://dx.doi.org/10.1088/1751-8121/ab1ce0
https://dx.doi.org/10.1088/1751-8121/ab1ce0
http://dx.doi.org/10.1142/7663
https://www.worldscientific.com/doi/abs/10.1142/7663
https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements545

This work was supported by the Swartz Foundation (N.R.), the Kavli Institute for Brain and Mind546

(N.R.), the National Institute of Biomedical Imaging and Bioengineering R01EB026899-01 (T.J.S.),547

National Institute of Neurological Disorders and Stroke R01NS104368 (T.J.S.), Mission funding548

from the cooperative agreement under the United States Army Research Laboratory W911NF-17-549

S-0003-03 (N.R.), the funding from the National Research Council of Thailand #1187111 on the550

fiscal year 2023 (T.C.), and from Thailand Science Research and Innovation Fund Chulalongkorn551

University (IND66230005) (T.C.) The views and conclusions contained in this document are those552

of the authors and should not be interpreted as representing the official policies, either expressed or553

implied, of the DEVCOM Army Research Laboratory or the United States Government.554

Author information555

Department of Biomedical Engineering, Columbia University, New York, NY, USA556

Nuttida Rungratsameetaweemana557

Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla,558

CA, USA559

Nuttida Rungratsameetaweemana, Robert Kim & Terrence J. Sejnowski560

Neurology Department, Cedars-Sinai Medical Center, Los Angeles, CA, USA Robert561

Kim562

Chula Intelligent and Complex Systems, Department of Physics, Chulalongkorn Uni-563

versity, Bangkok, Thailand564

Thiparat Chotibut565

Institute for Neural Computation, University of California San Diego, La Jolla, CA,566

USA567

Terrence J. Sejnowski568

Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA569

Terrence J. Sejnowski570

Contributions571

N.R. and R.K. conceived, designed, and performed the research; N.R., R.K., and T.C. analyzed572

data; N.R., R.K., T.C., and T.J.S. wrote the manuscript.573

27

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/


Corresponding author574

Corresponding authors: correspondence to Thiparat Chotibut or Terrence J. Sejnowski575

Declaration of interests576

The authors declare no competing interests.577

Code availability578

The code for training the networks and for the analyses performed in this work will be made available579

at https://github.com/NuttidaLab/Noisy_RNN.580

Data availability581

All data used in the present study will be deposited as MATLAB-formatted data in Open Science582

Framework, https://osf.io/dqy3g/.583

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 31, 2023. ; https://doi.org/10.1101/2022.10.14.512301doi: bioRxiv preprint 

https://github.com/NuttidaLab/Noisy_RNN
https://osf.io/dqy3g/
https://doi.org/10.1101/2022.10.14.512301
http://creativecommons.org/licenses/by-nc-nd/4.0/

