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Abstract (187 words) 

Decisions made about identical perceptual stimuli can be radically different under 

changing task demands. For example, the need to make a fast decision undermines the 

accuracy of that decision, a well-documented effect termed the speed-accuracy tradeoff 

(SAT). Models of the SAT are generally based on theories of decision making in which 

responses are triggered only after sensory evidence accumulation terminates at a set 

threshold. Within this accumulate-to-bound framework, speed pressure operates by 

lowering the response threshold, allowing for faster responses at the expense of 

accumulated sensory evidence. To empirically examine the mechanisms necessary for 

adaptively adjusting the speed and accuracy of decisions, we used an event-related 

potential that indexes sensory evidence accumulation in the human brain. Instead of 

lowering response thresholds, we found that speed pressure adaptively shifts 

responses to occur close to where the rate of evidence accumulation peaks. Moreover, 

responses are not triggered automatically by the termination of the accumulation 

process, as sensory evidence continues to build after speeded decisions. Together 

these results suggest that response processes adaptively access accumulating sensory 

evidence depending on task demands and support parallel over serial models of 

decision making.  
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Introduction 

Current task demands often prioritize either the speed or accuracy of a decision at the 

expense of the other (the speed-accuracy tradeoff, or SAT) (Heitz, 2014; Heitz & Schall, 

2012; Henmon, 1911; Roger Ratcliff & Rouder, 1998; Shadlen, Hanks, Churchland, 

Kiani, & Yang, 2006).  For example, classifying whether a vehicle on the highway is law 

enforcement might inspire a fast decision to slow down. While this speeded 

classification is less likely to be accurate, it is nevertheless a good strategy for avoiding 

a costly ticket.  

 

The SAT is typically modeled within the serial accumulate-to-threshold framework of 

decision making, which holds that responses are only executed once sensory 

information accumulates to a specific threshold (Bogacz, Brown, Moehlis, Holmes, & 

Cohen, 2006; Bogacz, Wagenmakers, Forstmann, & Nieuwenhuis, 2010; Brody & 

Hanks, 2016; R. Kiani, Hanks, & Shadlen, 2008; Roger Ratcliff, Smith, Brown, & 

McKoon, 2016). In these models, speeded decisions are due to lower response 

thresholds, meaning decisions are based on impoverished sensory evidence and are 

therefore less accurate (Drugowitsch, Moreno-Bote, Churchland, Shadlen, & Pouget, 

2012). In contrast, increased response thresholds allow for the accumulation of more 

sensory evidence and thus slower but more accurate decisions (Heitz, 2014; Shadlen et 

al., 2006).   

 

Several neural markers have been used to index the accumulation of sensory evidence 

leading up to a response. Neural activity recorded from lateral intraparietal cortex, 

frontal eye field and superior colliculus rises to a stereotyped threshold before response 

execution in non-human primates performing simple perceptual decision making 

tasks(Gold & Shadlen, 2007; Hanes & Schall, 1996; Huk, 2005; R. Ratcliff, 2003; 

Roitman & Shadlen, 2002; Schall, 2003). Similarly, electroencephalography (EEG) 

recordings from humans have found that the amplitude of the event-related centro-

parietal-positivity (CPP), reaches a stereotyped threshold at the time of response, 

suggesting that the CPP tracks the accumulation of sensory evidence (Kelly & 

O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012; Rungratsameetaweemana, 
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Itthipuripat, Salazar, & Serences, 2018a). These experiments also suggest that the 

amount of available sensory evidence only influences the rate of evidence 

accumulation, not the response threshold (Kelly & O’Connell, 2013; Shadlen & Kiani, 

2013), which is consistent with modeling results (Bogacz et al., 2006; Gold & Shadlen, 

2007; Roitman & Shadlen, 2002; Shadlen & Kiani, 2013). Thus, these findings have 

been interpreted as empirical evidence that responses are triggered by the termination 

of evidence accumulation at a set threshold, irrespective of how quickly that threshold is 

reached. However, these experiments did not test whether this framework extends to 

decisions made under changing cognitive demands.  

 

Indeed, simple modulations in response thresholds in a serial accumulate-to-threshold 

framework may not account for flexible decision making under speed pressure. 

Previous work using fMRI suggests that there are changes in both sensory and 

response processes with speed pressure (Forstmann et al., 2010; Ho et al., 2012; 

Ivanoff, Branning, & Marois, 2008; van Veen, Krug, & Carter, 2008), but assessing the 

timing of processes underlying decision making is difficult in fMRI studies as they do not 

have the temporal resolution to track evidence accumulation in real time. Importantly, 

one report manipulating the SAT performed single-unit recordings in the frontal-eye-field 

(FEF) of highly-trained non-human primates, a region containing a mixture of sensory, 

sensory-motor, and motor selective neurons (Heitz & Schall, 2012). Speed pressure 

increased baseline and maximum firing rates in most sensory neurons, and increased 

the magnitude and slope of firing rates at the time of response in motor selective cells 

encoding the impending saccadic response (Heitz & Schall, 2012). Note that these 

diverse results are inconsistent with accumulate-to-threshold models of the SAT, where 

speed pressure decreases response thresholds without modulating how sensory 

evidence accumulates (Heitz & Schall, 2012). However, the generalizability of this 

conclusion to other neural regions, varying levels of sensory evidence, and in subjects 

without extensive training is unknown. Additionally, previous studies have not 

dissociated decision making under external, explicit speed goals from internally 

regulated trial-to-trial variability in response times. Thus, it is unclear whether prior 
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effects are related to changes in task demands or are instead due to distinct but 

correlated changes in general arousal or attentional state.  

 

Here we manipulate speed pressure to test the assumptions of the traditional 

accumulate-to-threshold framework by measuring the CPP as a continuous index of 

evidence accumulation in human subjects. Along with speed pressure, we varied the 

amount of sensory evidence present on each trial to parametrically evaluate how speed 

goals impact the temporal sequencing of evidence accumulation and response 

execution. Finally, we isolate changes due to explicit speed goals from internally 

regulated variability by analyzing the data with and without matching response times 

across speed-emphasized and accuracy-emphasized conditions.  

 

Our data suggest that when accuracy is emphasized, responses are made around the 

time when sensory evidence accumulation terminates. However, counter to accumulate-

to-threshold models, responses are executed before evidence accumulation terminates 

under speed pressure. Importantly, response times are systematically shifted towards 

the time of maximal rate of evidence accumulation, indicating response processes 

maintain continual access to the state of evidence accumulation. Furthermore, 

decreasing the amount of available sensory evidence reduced response thresholds, not 

just accumulation rates, implying that reaching a stereotyped level of evidence does not 

automatically trigger a response. Together, these findings demonstrate a high degree of 

flexibility under changing speed goals inconsistent with serial frameworks of decision 

making.  

 

Results  

Contrast discrimination task  

Twenty human subjects completed a visual contrast discrimination task while 

electroencephalography (EEG) signals were recorded (Figures 1A,B). Each trial started 

with a centrally presented full-field checkerboard stimulus flickering at 10Hz with 3.957 

log (52% Michelson) contrast. After a pseudo-random interval of 600-1000 ms, the 

stimulus could increase, decrease, or maintain its contrast for an additional 2000 ms 
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before stimulus offset. Subjects were instructed to discriminate the direction of a 

contrast change (two alternative forced choice: contrast increase or decrease) while 

maintaining fixation on a central fixation point.  

 

We explored how speed goals and amount of sensory evidence impact the temporal 

sequencing of evidence accumulation and response execution processes during 

perceptual decision making. Speed pressure was manipulated across experimental 

blocks. On speed emphasized blocks, subjects were instructed that correct responses 

would only be rewarded if made quickly after target onset (rewarded response interval 

was jittered pseudo-randomly from 400 to 600 ms after target presentation, following 

references (Heitz & Engle, 2007; Heitz & Schall, 2012)). During accuracy-emphasized 

blocks, subjects were instructed that responding correctly while the stimulus was on the 

screen would result in a monetary reward (i.e. within 2000 ms after target presentation). 

We varied the amount of sensory evidence across trials by showing either a small, 

medium, or large increase or decrease in the contrast of the stimulus. We presented 

each of the resulting seven levels of sensory evidence (including no change trials; see 

Methods) with equal probability. Note that while only correct trials are plotted for 

behavioral and EEG analyses, RTs from incorrect trials were used for modelling the 

behavioral data (see section below). 

 

Behavior  

Behavioral data indicate that both our sensory evidence and SAT manipulations were 

successful (Figure 1C). There was a reliable effect of speed pressure on hit rates and 

RTs over all non-zero contrast change conditions (Figure 1C, Supplementary Figure 1A; 

post-hoc t-tests: t(19)’s = 2.92-10.89, all p’s ≤ 0.009 for hit rate; t(19)’s = 6.90-10.10, all 

p’s < 0.001 for RTs; two-tailed, FDR-corrected). As intended, the absolute, instead of 

signed, amount of sensory evidence was key in modulating behavior, indicated by 

consistent effects of speed goals and amount of sensory evidence across collapsed and 

non-collapsed behavioral data (evaluated with a repeated-measures ANOVA on SAT 

and contrast, reported below). Thus, for simplicity, we show data collapsed across 
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contrast decrement and increment trials throughout the remainder of the text (unless 

otherwise noted). 

 

As expected, larger changes in contrast led to faster and more accurate responses 

(Figure 1C, Supplementary Figure 1A; main effect of contrast: RT- F(2,38) = 137.78, p < 

10-15, non-collapsed F(5, 95) = 63.18, p < 10-15:  Hit Rate- F(2,38) = 25.64, p<10-7, non-

collapsed F(5, 95) = 12.02, p < 10-8). Additionally, subjects responded faster but less 

accurately under speed pressure (main effect of SAT: RT - F(1, 38) =110.49, p<10-8, 

non-collapsed F(1, 95) = 107.16, p < 10-8; Hit Rate - F(1,38) = 189.67, p<10-10, non-

collapsed F(1, 95) = 189.67, p <10-10). Finally, decreasing the amount of sensory 

evidence had a larger impact during accuracy emphasized blocks, leading to relatively 

lower hit rates and longer RTs (SAT x contrast interactions: Hit Rate - F(2,38) = 12.18, 

p<10-4, non-collapsed F(5, 95) = 14.34, p <10-9; RTs - F(2,38) = 40.53, p<10-9, non-

collapsed F(5, 95) = 24.28, p < 10-14). We excluded no-change trials from these 

analyses to avoid spurious interactions since accuracy was randomly assigned with 

50% probability on these trials (see Methods). 

 

Behavioral modelling suggests that speed pressure reduces response thresholds 

To model how serial accumulate-to-threshold theories account for the impact of speed 

pressure and sensory evidence on behavior we estimated evidence accumulation rates 

(e.g. drift rates) and response thresholds using a Linear Ballistic Accumulator (LBA) 

model(Brown & Heathcote, 2008). The LBA specifies decisions as a race between 

independent accumulators corresponding to each possible choice in which the first 

accumulator to reach the response threshold determines decision choice and RT. We 

chose the LBA model due to its simplicity and ability to accommodate a variety of 

empirical results (Bogacz et al., 2010; Brown & Heathcote, 2008; Ho et al., 2012). 

Importantly, the LBA model accounts for accuracy and RTs associated with both correct 

and incorrect responses, making it a natural choice for modeling responses reflecting 

the SAT(Brown & Heathcote, 2008). We fit each subject’s behavioral data using 

maximum likelihood estimation of response threshold and drift rate across SAT 
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conditions and contrast change levels collapsed across increment/decrement trials (see 

ref(Donkin, Brown, & Heathcote, 2011), Methods).  

 

We found that reductions in sensory evidence lead to slower drift rates (F(2, 38) = 

33.03, p <0.001; Figure 1D) but had little impact on response thresholds (F(2, 38) = 

2.67, p = 0.083). In contrast, speed pressure reduced response thresholds (F(1, 19) = 

39.04, p <0.001) but did not influence drift rates (F(1, 19) = 0.73, p = 0.404). Thus, in 

line with existing computational models, our behavioral data can be accounted for by 

selective increases in drift rates with greater sensory evidence and reductions in 

response thresholds with speed pressure (Forstmann et al., 2010; Gold & Shadlen, 

2007; Ho et al., 2012; O’Connell et al., 2012; Purcell et al., 2010; Rahnev & Denison, 

2018; Rahnev, Evan, Riddle, Sue, & Esposito, 2016; Roger Ratcliff et al., 2016).  

 

Speed goals do not modulate early sensory responses 

To evaluate whether speed goals and sensory evidence modulate early sensory 

encoding, we flickered the stimulus at 10Hz to measure the amplitude of the steady-

state visually evoked potential (SSVEP; Figure 2A; see Methods; all FDR-correction 

from -500 to +2500 ms around the target). Consistent with past studies, SSVEP 

amplitude increased as a function of target contrast (timepoints from 66-481 ms and 

830-2104 ms post-target survive FDR correction for the main effect of contrast: F(6, 

114)’s = 2.46-11.57, p’s ≤ 0.028; (Di Russo, Spinelli, & Morrone, 2001; Sirawaj 

Itthipuripat, Garcia, Rungratsameetaweemana, Sprague, & Serences, 2014; Kim, 

Grabowecky, Paller, Muthu, & Suzuki, 2007; Norcia, Appelbaum, Ales, Cottereau, & 

Rossion, 2015; W. & J., 1972; Wang & Wade, 2011)). This indicates that increasing 

target contrast successfully increased the amount of sensory evidence represented in 

visual cortex. Importantly, speed pressure did not affect SSVEP amplitude (main effect 

of SAT: F(1, 19)’s ≤ 3.26, all p’s ≥ 0.087; SAT x contrast interaction: F(6, 114)’s ≤ 3.55, 

p’s ≥ 0.003, non-significant after FDR-correction, and note that uncorrected p’s ≤ 0.05 

occurred long after the mean RT). This null result suggests that any effects of speed 

pressure on the CPP are not simply inherited from changes in early sensory gain.  
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Although we did not find evidence that speed goals impact sensory gain, a previous 

study based on recordings in FEF of non-human primates, an area involved in sensory-

motor integration as opposed to only sensory processing, did report an increase in 

sensory gain with speed pressure (Heitz & Schall, 2012; Schall, 2002; Thompson & 

Schall, 1999). To more closely emulate the analysis used in the previous study, we 

computed SSVEP amplitudes aligned to response onset (FDR corrected from -500 ms 

to +250 ms around response, see Methods). Similar to the stimulus-onset locked 

analysis presented above, higher contrast targets led to higher SSVEP amplitudes at 

the time of response onset (main effect of contrast: 2.44 ≤ F(6,114)’s ≤ 7.44, p’s ≤ 0.29 

for timepoints from -457 to -17 ms pre-response that survive FDR correction). While 

there was also a modest pre-response interaction between contrast and SAT, this 

interaction did not survive FDR correction (Supplementary Figure 1B; F(6,114)’s ≤ 3.17, 

0.007 ≤ p’s).  

 

Even though this interaction did not survive FDR correction, we explored whether it 

could be due to changes in explicit task demands regarding speed pressure or to 

internal variability in attention or arousal. Therefore, we used a resampling procedure to 

match the RTs across speed and accuracy conditions to isolate effects due to changes 

in explicit task demands (see Methods, section: RT sorting and RT matching analyses). 

First, we observed a qualitative increase in SSVEP amplitude during trials with fast 

compared with slow RTs (Supplementary Figure 1C; Main effect of RT did not survive 

FDR correction: F(6,114)’s ≤ 9.56, 0.006 ≤ p’s; Contrast x RT interaction did not survive 

FDR correction: F(6,114)’s ≤ 3.73, 0.002 ≤ p’s). Moreover, when RTs were matched 

between speed and accuracy conditions, there was no longer any pre-response 

interaction between SAT and contrast (Supplementary Figure 1D; post-response 

interaction did not survive FDR correction: F(6,114)’s ≤ 2.94, 0.01 ≤ p’s). This suggests 

that the previous report of sensory gain in FEF neurons with speed pressure could be 

due in part to internally-regulated variability in RTs instead of explicit speed goals (Heitz 

& Schall, 2012).  

 

Sensory evidence, but not speed pressure, modulates CPP amplitude at response 
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Since our aim was to track the evidence accumulation process leading up to a 

response, we focus on the effects of speed goals and sensory evidence on the 

response-locked CPP (See Figure 2B for a guide to interpreting CPP metrics; Figures 

3A-C; we present detailed target-locked CPP results in the Supplementary Results). 

First, we found that CPP amplitude at response onset, posited as an empirical measure 

of response threshold, decreased with the magnitude of target contrast (Figures 3C,D; 

F(3, 19) = 96.67; p <10-15). This putative modulation of response thresholds is 

inconsistent with accounts that sensory evidence selectively modulates the speed of 

evidence accumulation (Drugowitsch et al., 2012; Kelly & O’Connell, 2013; R. Kiani et 

al., 2008; O’Connell et al., 2012). Note that accumulate-to-threshold models sometimes 

incorporate response thresholds that collapse as deliberation time increases, which may 

account for our data given that we found longer RTs on trials with low contrast targets 

(Drugowitsch et al., 2012; Roger Ratcliff et al., 2016). However, reduced CPP amplitude 

with lower sensory evidence is still observed in RT-matched data, indicating that 

collapsing response thresholds with long RTs cannot account for this effect (F(3, 57) = 

92.37; p <10-15; Figure 3F, Supplementary Figure 2A,D;). Also contrary to accumulate-

to-threshold models of the SAT, speed pressure did not significantly reduce CPP 

amplitude at the time of response (Figure 3D; F(1,57) = 3.31, p = 0.085; SAT x contrast 

interaction: F(3, 57) =1.44, p = 0.241; also note gaps in significance at response time in 

Figures 3A-C). Interestingly, post-hoc t-tests suggest a slight increase in the amount of 

sensory evidence needed to trigger a response instead of the decrease suggested by 

computational models (e.g. the LBA in present study; (Hanks, Kiani, & Shadlen, 2014; 

R. Ratcliff, 2003)), consistent with previous evidence in non-human primates (Heitz & 

Schall, 2012) (t(19)’s = -1.09, -2.49, -2.15, p = 0.29, 0.02, 0.04 for large, medium and 

small contrast changes). That said, there was no significant effect of speed pressure on 

CPP amplitude at response over all contrast levels (F(1,57) = 3.31, p = 0.085; SAT x 

contrast interaction: F(3, 57) =1.44, p = 0.241), which held when we matched RTs 

between speed and accuracy conditions (Figure 3F, Supplementary Figure 2A,B; F(1, 

19) = 1.9, p = 0.184). Importantly, note that CPPs actually continued to rise after the 

responses were made under speed pressure, a result inconsistent with the traditional 
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accumulate-to-threshold theory in which responses are only triggered once sensory 

accumulation reaches its peak (Figure 3A-C).  

 

Speed pressure shifts response timing relative to the CPP 

Instead of modulating CPP amplitude at the time of a response, speed pressure 

appears to temporally shift the CPP relative to response (Figures 3A-C,E). While 

responses occurred close to the CPP peak in the accuracy condition, speed pressure 

shifted response times approximately 52 ± 11 ms before the CPP peak, quantified as 

peak-to-response latency (mean ± SE; Figure 3E left; SAT main effect on amplitude 

peak-to-response latency: F(1, 19) = 14.34, p = 0.001). After median splitting trials into 

fast and slow bins we found a graded pattern such that explicitly speeded trials with fast 

RTs exhibited the largest shifts in peak-to-response latencies (Figure 3E right; Main 

effect of RT: F(1, 19)  = 7.63, p = 0.012; see Methods, section: RT sorting and RT 

matching analyses). Importantly, any nonzero peak-to-response latencies during 

accuracy emphasized trials were eliminated after matching RTs, while the shift in peak-

to-response latency with speed pressure was more prominent – increasing to 59 ± 13 

ms (Figure 3G, Supplementary Figure 2A; Main effect of SAT: F(1, 19) = 19.08, p 

<0.001; t-tests against zero - accuracy: t(19)’s = 0.20, 0.33 , 0.94 and 0.36 with p’s  = 

0.20, =0.33, =0.94 and = 0.36 for large, medium, small and no contrast change, 

respectively; speed: t(19)’s = 3.62, 3.73, 6.94 and 7.34 with p’s  < 0.002, <0.002, <10-5, 

<10-6 for large, medium, small and no contrast change). This robust effect after 

matching RTs indicates this shift cannot be accounted for by confidence or urgency 

signals that are known to be associated with RTs (Baranski & Petrusic, 1994; 

Drugowitsch et al., 2012; Roozbeh Kiani, Corthell, & Shadlen, 2014). Together, these 

results suggest that subjects can flexibly shift response timing with respect to the 

ongoing accumulation process under explicit speed pressure to respond before 

evidence is fully accumulated (Cosman, Arita, Ianni, & Woodman, 2016).  

 

Sensory evidence does not robustly affect the timing of responses relative to the CPP 

Reducing the amount of sensory evidence also shifted responses to occur before the 

peak of the CPP (F(3, 57) = 4.12, p = 0.010, SAT x contrast interaction: (F(3, 57) = 2.85, 
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p = 0.046). However, unlike the shift associated with speed pressure, the effect of 

sensory evidence is attenuated when RTs are matched across conditions, suggesting 

that the shift was largely attributable to trials with slow RTs on low contrast accuracy 

emphasized trials (Figure 3E,G, Supplementary Figure 2A; F(3, 57) = 3.65, p = 0.018, 

SAT X contrast interaction: F(3,57) = 1.87, p > 0.14). 

 

Both sensory evidence and speed pressure modulate the slope of the CPP  

We next explored the slope of the CPP, a proxy for the rate of evidence accumulation, 

as a potential mechanism by which speed pressure flexibly modulates the timing of 

responses with respect to the ongoing evidence accumulation process. We numerically 

computed the slope of the response-locked CPP (Figure 4A; see Methods) and found 

that mean CPP slope preceding responses was higher with both speed pressure and 

increased sensory evidence (averaged from -100-0 ms leading up to the response, 

Figure 4B; F(1, 19) = 50.70, p < 10-6; F(3, 57) = 18.47, p <10-7, (Gold & Shadlen, 2002, 

2003, 2007; Heitz & Schall, 2012; Purcell et al., 2010; Roitman & Shadlen, 2002; 

Shadlen et al., 2006)). Note that while there was an interaction between speed pressure 

and sensory evidence on pre-response CPP slope (F(3, 57) = 18.47, p < 10-9), post-hoc 

t-tests revealed this was because speed pressure increased CPP slope in all contrast 

conditions except for the “no change” condition (t(19)’s = -6.37, -7.55 , -4.85 and -1.39 

with p’s  < 10-5, <10-6, <0.001 and = 0.18 for large, medium, small and no contrast 

change, respectively). Importantly, the increase in pre-response CPP slope held even 

when we matched RTs between speed and accuracy conditions (Figure 4E, 

Supplementary Figure 2E; SAT: F(1, 19) = 51.08, p < 10-6; Contrast: F(3, 57) = 14.5, p 

<10-6). Again, post-hoc t-tests revealed significant effects of speed pressure in all 

contrast change conditions except for the no-change trials (t(19)’s = 5.82, 7.84, 3.52, 

and 1.60 with p’s < 0.0001, <10-6, = 0.002, = 0.127 for large, medium, small, and no 

contrast changes, respectively). This increase in pre-response CPP slope indicates that 

explicit speed pressure increases the rate of evidence accumulation just before a 

response, an effect that could be due to differences in either the magnitude of the peak 

slope or the timing of the peak slope relative to response. 

 



13 

 

Explicit speed pressure does not increase the magnitude of the peak CPP slope  

To better understand how speed pressure increases mean pre-response CPP slope, we 

first consider the magnitude of the peak CPP slope, which increased with both speed 

pressure and greater sensory evidence (Figure 3C left; SAT: F(1, 19) = 15.55, p < 

0.001; CT: F(3, 57) = 20.88, p < 10-8; no interaction F(3, 57) = 0.86, p =0.46). However, 

note that the modulatory pattern of speed goals on the maximal slope did not show the 

interaction with contrast seen previously in the pre-response slope (lower contrasts 

reduced peak slope during both SAT conditions, while contrast only impacted mean pre-

response slope with speed emphasis - Figure 4B vs 4C). Thus, increases in pre-

response CPP slope due to speed pressure cannot be solely attributed to increases in 

the magnitude of the peak slope. Indeed, matching RTs greatly reduced the link 

between the maximal CPP slope and speed pressure such that even though there was 

still a significant effect of speed pressure on the magnitude of the peak CPP slope (F(1, 

19) = 8.52, p =0.009), these results were not robust within each contrast condition 

(Figure 4F, Supplementary Figure 2E; post-hoc t-tests: t(19)’s = 0.66, 1.35, 0.42, and 

1.89, p’s = 0.519, 0.191, 0.679, 0.074 for large, medium, small and no contrast change, 

respectively). Moreover, when trials were split into fast and slow RTs, we found that fast 

responses increase the magnitude of the peak CPP slope independent of speed 

pressure (Figure 4C right; main effect of RT: F(1,19) = 45.13, p < 10-5, RT x SAT 

interaction: F(1,19) = 1.6, p = 0.2; see Methods Section: RT sorting and RT matching 

analyses). This significant increase in the magnitude of peak CPP slope with fast RTs 

suggests internal processes like attention and arousal may increase the maximal rate of 

evidence accumulation. Additionally, matching RTs reveals that explicit speed pressure 

doesn’t robustly modulate the magnitude of peak CPP slope, meaning increases in 

maximal accumulation rate could be a selective mechanism underlying trial-to-trial 

variability during perceptual decision making.  

 

External speed pressure shifts responses toward the time of peak CPP slope  

As the magnitude of peak CPP slope was not robustly impacted by explicit speed goals, 

we next explore the timing of peak CPP slope as a potential source of the increase in 

pre-response CPP slope with explicit speed pressure. There is a qualitatively apparent 
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shift in the timing of responses with respect to CPP slope under speed goals (Figure 

4A). Indeed, speed pressure systematically shifts responses 40.7 ± 9.1 ms closer to the 

time of peak CPP slope compared with accuracy emphasized trials (Mean ± SE; Figure 

4D; Main effect of SAT: F(1, 19) = 27.32 , p < 0.0001). Additionally, the shift in RT with 

speed pressure was more pronounced on trials with higher amounts of sensory 

evidence (Main effect of Contrast: F(3, 57) = 11.7, p < 10-5; SAT x Contrast interaction: 

(F(3, 57) = 7.98, p < 0.001; Figure 4A,D left; t(19)’s = -6.14, -5.07 , -2.02 and -0.80, with 

p’s <10-5, <0.001, = 0.058 and = 0.44 for large, medium, small and no contrast changes, 

respectively). As before, we dissociate external, explicit speed goals from internally 

regulated variability in RT by re-computing the timing of the peak CPP slopes after 

matching RTs (Supplementary Figure 2E). Highly consistent with the non RT matched 

data, we found that speed pressure brought response times closer to the time of peak 

CPP slope (F(1, 19) = 17.22, p < 0.001), an effect driven by trials with more sensory 

evidence (t(19)’s = 3.78, 5.64, 1.29, and 0.20 with p’s = 0.001, <0.0001, = 0.212, = 

0.844 for large, medium, small, and no contrast changes, respectively). Splitting trials 

into fast and slow RTs revealed that internally regulated fast responses only shifted 

responses 19 ms ± 4.3 SE closer to the time of peak slope as compared with slow trials 

(Figures 4C-D right; main effect of RT: F(1,19) = 7.67, p = 0.012). Thus, there seem to 

be distinct mechanisms through which humans make speeded responses: internally 

regulated fast decisions increase the rapidity of evidence accumulation, while 

responses execution is shifted to occur once evidence accumulation decelerates under 

external, explicit speed pressure.  

 

Discussion 

The present results suggest that, when under speed pressure, responses can be 

executed before evidence accumulation is complete instead of being automatically 

triggered by its termination. This is evident in a shift of the CPP relative to responses 

such that responses are made shortly after evidence accumulation reaches its maximal 

rate. This pattern diverges from predictions made by computational models within the 

accumulate-to-threshold framework, including our own LBA model of behavioral data, 

which explain faster responses made under explicit speed pressure by a simple 
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reduction in the amount of accumulated sensory evidence. Instead, our observation that 

evidence continues to accumulate even after speeded responses are made argues in 

favor of an architecture in which humans can flexibly engage in response planning 

concurrently with evidence accumulation to meet task demands.  

 

Interestingly, our analyses of the amplitude and slope of the CPP indicate that explicit 

speed goals modulated response timing in a systematic way. With speed pressure, 

subjects responded once evidence accumulation began to decelerate, even though 

sensory evidence was still accumulating. Alternatively, when accuracy was emphasized 

responses were not executed until sensory evidence accumulation was complete. This 

shifting of response times is a potential temporal mechanism by which speed pressure 

decreases reliance on incoming sensory evidence (Ho et al., 2012; Ivanoff et al., 2008) 

to execute responses as soon as the rate of sensory evidence accumulation starts to 

decelerate. Our observation that additional sensory information is discounted with 

speed pressure makes sense because accumulating evidence takes time, suggesting 

decisions are made once a point of “diminishing returns” is reached. Further 

experiments are needed to determine whether the criterion for diminishing returns is 

always anchored to the rate of evidence accumulation, as we found with explicit speed 

pressure, or whether other factors are involved under various task demands. 

 

We note the possibility that the observed shifts with speed pressure could reflect 

changes in decision urgency or confidence if the CPP reflects a decision signal that isn’t 

selective for sensory evidence accumulation (Donchin, Kubovy, Kutas, Johnson, & 

Tterning, 1973). However, responses made under speed pressure occurred even 

farther before the peak of the CPP instead of being eliminated when RTs were matched 

between speed and accuracy conditions, a factor known to be strongly correlated with 

urgency and confidence. Additionally, when accuracy was emphasized the data are 

largely consistent with previous characterizations of the CPP as an abstract decision 

signal that reaches a maximal level at the time of behavioral response, suggesting that 

speed pressure alters the timing between evidence accumulation and response 

processes in a way that diverges from accumulate-to-threshold modelling frameworks. 
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While further work is needed to determine the neural generators of the CPP and its 

functional significance, the present data suggest that, at least in the context of this task, 

serial accumulate-to-threshold theories do not capture the flexibility of decision making 

under changing cognitive demands.  

 

It is important to note that while both internally regulated variability in RT and explicit, 

externally imposed speed goals affect the slope of the CPP, they do so in dissociable 

ways. Explicit speed pressure shift response timing with respect to the ongoing 

evidence accumulation process. On the other hand, internal processes leading to fast 

RTs independent of externally imposed speed goals appear to result from more rapid 

sensory evidence accumulation (Kelly & O’Connell, 2013). This indicates a need for 

future studies to dissociate explicit speed goals due to task demands from internally 

mediated variability in RTs. 

 

We also found that the total amount of sensory evidence accumulated, and not just the 

speed of evidence accumulation, decreased monotonically with less available sensory 

evidence largely independent of reaction times. This suggests that the amount of 

evidence humans accumulate is proportional to the total amount of sensory evidence 

available in the environment, and further experiments are needed to elucidate the 

mechanism by which this accumulation threshold is set. Notably though, this finding 

contrasts with predictions from traditional accumulate-to-threshold models in which 

changing the amount of sensory evidence impacts the rate of evidence accumulation 

but leaves response thresholds unchanged.  

 

Together, our results suggest an alternative to the accumulate-to-threshold models that 

dominate current perceptual decision making theory. Instead, we suggest that 

downstream decision processes operate in parallel to the accumulation of sensory 

evidence, allowing for flexible sampling of evidence accumulation to adjust response 

timing according to task demands.  
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Methods 

Subjects 

21 human adults, who had normal or corrected-to-normal color vision, were recruited to 

participate in the experiment.  All subjects provided written informed consent as 

required by the local Institutional Review Board at the University of California, San 

Diego (UCSD; IRB#110176), and the experiment was conducted under protocols 

following the Declaration of Helsinki.  Subjects were compensated $15 per hour for 

participation plus an additional monetary reward of up to $15 depending on behavioral 

performance (see details below). The data of one subject was not included in the 

analysis because the subject decided to terminate their participation before the 

experiment was completed. This left 20 subjects in the final analyses (8 males; 2 left-

handed; mean age = 22.62 years old, SD = 6.47).  

Stimuli and tasks 

We presented stimuli and tasks on a PC running Windows XP using MATLAB 

(Mathworks Inc., Natick, MA) and the Psychophysics Toolbox (version 3.0.8; Brainard 

1997; Pelli 1985). Subjects were seated 60 cm from the CRT monitor (which had a grey 

background of 34.51 cd/m2, 120Hz refresh rate) in a sound-attenuated and 

electromagnetically shielded room (ETS Lindgren).  

 

Subjects performed a contrast discrimination task where they had to report the direction 

of a contrast change (either decreasing or increasing contrast) of a centrally presented 

checkerboard stimulus. This checkerboard stimulus was flickered at 10 Hz using equal 

on-off duty cycles of 6 frames each. The target always appeared at the on-cycle of the 

SSVEP flicker frequency, and lasted for 2000ms. Each trial began with a black circle 

fixation at the center of the computer screen where they were instructed to fixate for 

600, 700, 800, 900 or 1000 ms (randomly drawn on each trial). After the fixation period, 

a checkerboard stimulus of 3.957 log contrast (52% Michelson) contrast appeared for 

600–1000 ms (i.e., a non-target period) followed by either a small contrast 

decrement/increment of 0.181 log contrast (rendered at 44%/63% Michelson contrast), 

medium contrast decrement/increment of 0.362 (37%/75% Michelson), or large 

decrement/increment of 0.543 (31%/90% Michelson), or the same non-target stimulus 
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rendered at the same contrast (no change). On each trial, a particular target contrast 

(including no change) appeared with an equal probability of 1/7.  

SAT was manipulated across blocks of 70 trials. In speed emphasized blocks, Subjects 

had up to 400-600ms (jittered pseudo-randomly) after target onset to respond to gain 

monetary reward. In accuracy emphasized blocks, subjects had 2000ms after target 

onset (i.e. until target offset) to respond to gain monetary reward. Any given correct 

response made before the deadline yielded a monetary reward of 0.01 cents, leading to 

an average reward of $9.73 ± 0.72 (mean ± SD).  

EEG preprocessing 

After data collection, data from the scalp electrodes were re-referenced to the algebraic 

mean of the two mastoid electrodes. Then, the raw time series from each electrode was 

bandpass filtered between 0.25 to 58 Hz to attenuate slow drift and 60 Hz line noise. 

After filtering, data were epoched into 5 second intervals from -1.5 to +3.5 seconds 

around target onset. Exclusion criteria for trials were based on thresholds determined 

for each subject by visual inspection. Trials were excluded from ERP analyses if the 

EOG channels located above or below either eye reached on average 111.5 ± 23.2 mV 

(mean ± SD for blinks) or if the EOG channels located outside either outer canthi 

reached 76.25 ± 12.86 mV (mean ± SD for saccades). Using these criteria, an average 

of 15.3% ± 10.5% S.D. of trials were excluded, leaving 1162.5 ± 150 (mean ± SD) trials 

for EEG analyses.  

 

EEG analysis  

SSVEP amplitudes were estimated from data averaged over trials within each contrast 

and SAT condition at central occipital electrode Oz using a wavelet transform with a 

Gaussian frequency domain kernel with 2 Hz FWHM (0.8493 Hz SD)(Di Russo et al., 

2001; Sirawaj Itthipuripat et al., 2014; Kim et al., 2007; Norcia et al., 2015; W. & J., 

1972; Wang & Wade, 2011). The absolute values of these complex coefficients were 

then taken to obtain SSVEP amplitude measures for each contrast and SAT condition. 

For RT locked SSVEPs, data were averaged after realigning each trial to the first on-

frame of each duty cycle nearest to the RT on that trial. 
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Event-related-potentials (ERPs) were computed by taking the average time courses 

centered on either the target time (target-locked) or the behavioral response (response-

locked). For the response locked data, we re-epoched each trial from -300 ms to +200 

ms around the behavioral response on that trial. Averages were taken within each 

contrast and SAT condition, leading to an average of 71.9 ± 13.1 SD trials per each 

SAT x Contrast condition without sorting by RTs, and 35.9 ± 6.5 SD after sorting based 

on median RT. For plotting purposes, data were filtered using a stop pass third order 

Butterworth filters between 8 and 12 Hz to attenuate the SSVEP signal, and a low pass 

third order Butterworth filter at 22 Hz after averaging. However, reported statistics were 

computed on unfiltered ERPs. Here, we used the CPP component as a neural index of 

sensory evidence accumulation following previous studies(Kelly & O’Connell, 2013; 

O’Connell et al., 2012; Rungratsameetaweemana, Itthipuripat, Salazar, & Serences, 

2018b; Twomey, Murphy, Kelly, & O’Connell, 2015). The CPP data were analyzed at 

centro-parietal electrode (CPz) based on previously published studies(S. Itthipuripat, 

Ester, Deering, & Serences, 2014; S Itthipuripat, Cha, Rangsipat, & Serences, 2015; 

Kelly & O’Connell, 2013; O’Connell et al., 2012). Note that a decision-variable with 

similar accumulation dynamics to those seen in the CPP has also been observed in a 

late positive deflection or P3 component(Twomey et al., 2015), which has a long history 

in the ERP literature as being related to decision signals(Cosman et al., 2016; Donchin 

et al., 1973; Friedman, Simson, Ritter, & Rapin, 1975; Sirawaj Itthipuripat, Cha, Byers, & 

Serences, 2017; Sirawaj Itthipuripat, Cha, Deering, Salazar, & Serences, 2018; G. R. 

Mangun & Hillyard, 1988; George R. Mangun & Buck, 1998; Nelli, Itthipuripat, 

Srinivasan, & Serences, 2017; Squires, Donchin, & Squires, 1977). 

 

RT sorted data were obtained within-subject by splitting trials into fast and slow bins 

according to each subject’s median RT determined separately for each contrast and 

SAT condition. We first combined data from the speed and accuracy emphasized trials 

and then divided all trials based on a median split of RTs at each contrast level. We 

then collapsed across all contrast levels, after performing the median split, to avoid 

confounding RT and contrast.  
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RT matched data were obtained for each subject by computing a vector ranging from 

the minimum to maximum RTs across speed and accuracy conditions in 100 ms steps, 

leading to an average of 6.71 ± 1.45 SD bins. Then, the number of speed trials and the 

number of accuracy trials were computed for each bin, and the minimum number of 

trials was taken. For each RT bin and SAT condition, that minimum number of trials was 

then randomly selected, without replacement, from the entire set of available RTs for 

each condition, and this process was repeated 100 times and then averaged across all 

the resampling iterations. Finally, trials from all RT bins were averaged within contrast 

and SAT condition (39.11 ± 9.42 trials, average ± SD). 

 

CPP amplitude at RT was extracted separately for each contrast and SAT condition, 

and then averaged over large, medium and small contrast increment and decrement 

change trials separately. Similarly, peak CPP amplitude and its latency were estimated 

separately for each contrast condition and then averaged over contrast increment and 

decrement trials. 

 

CPP slope was approximated by using the built-in ‘diff’ function in Matlab. This yeilded 

an estimate of the CPP derivative at each sample t by subtracting its amplitude at 

sample t from amplitude at sample t+1. We then multiplied the estimated derivative by 

the EEG sampling rate to convert units from mV/sample to mV/second.  

 

Statistics 

F statistics were computed using a 2 way repeated measures ANOVA with a 

combination of SAT (2 levels), contrast conditions (4 or 7 levels), or RT (2 levels) as 

independent variables as reported in the text. T statistics were reported using paired t-

tests.  When these statistics were computed over multiple timepoints we used FDR 

correction at an alpha level of 0.05 to control for multiple comparisons. P values are 

reported as < 10-15 when below the machine precision. In all figures, error bars and 

shaded regions represent between subject standard error of the mean. 
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Figure 1: Task design, subject behavior, LBA modeling and SSVEP. Note: All error 
bars and shaded regions represent between subject standard error of the mean. A: 
Subjects completed a visual contrast discrimination task in which there was a contrast 
increment or decrement after a pseudo-random interval of 600-1000 ms from a 52% 
Michelson contrast baseline on each trial. This contrast increment or decrement could 
be small, medium, or large, and 1/7 of the trials were catch trials in which no contrast 
change occurred. B: Subjects were instructed to discriminate the direction of the 
contrast change (increment or decrement) while the 2000 ms the stimulus remained on 
the screen on accuracy emphasized blocks, or within 400-600 ms (jittered pseudo 
randomly) during speed emphasized blocks. Subjects were instructed that a correct 
discrimination within these time limits would lead to monetary reward. C: Here we plot 
hit rates (upper panel) and RTs (lower panel) collapsed across contrast increments and 
decrements (left panel). On no contrast change trials, hit rates were randomly assigned 
regardless of the subject’s response. Larger contrast changes lead to more accurate 
and faster responses. Additionally, subjects responded faster but less accurately with 
speed pressure (Purple line). Statistics were performed using a repeated measures 
ANOVA, and excluding no contrast change trials since the correct response is not well 
defined for these trials. CT = Contrast, SAT = Speed Accuracy Tradeoff and INT = 
interaction. D: Decreased sensory evidence leads to reduced drift rates while sensory 
evidence does not affect response threshold. Conversely, speed pressure reduces 
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response threshold without impacting drift rates. Response threshold and drift rate 
parameters of the LBA model were fit using maximum likelihood estimation after 
collapsing behavioral data across increment and decrement trials within small, medium 
and large contrast change conditions. C-D: * indicates p<0.05, ** = p<0.01, *** = 
p<0.001 based on F statistics obtained with 2 way repeated measures ANOVA.  
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Figure 2: Early sensory evidence is not modulated by speed pressure and guide to 
interpreting CPP metrics 
A: We flickered the central stimulus at 10 Hz to measure SSVEP amplitude, an index of 
early sensory encoding. SSVEP amplitude from electrode Oz increased as a function of 
target contrast (indicated by black dots at top), while speed pressure did not significantly 
impact SSVEP amplitude after FDR correction. Bottom panels show F statistics and 
corresponding P values from a repeated measures 2 way ANOVA with contrast and 
SAT as factors. Inset topography plots show amplitude averaged over entire target 
duration (0 - 2000 ms, shaded gray). CT = Contrast, SAT = Speed Accuracy Tradeoff 
and INT = interaction, SE = Speed Emphasized, AE = accuracy emphasized. B: Guide 
to CPP Metrics. We show two idealized CPP examples in gray (left panel), with their 
corresponding slopes (right panel) 
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Figure 3: Speed pressure shifts response locked Central Parietal Positivity. Note: All 
error bars and shaded regions represent between subject standard error of the mean. 
A: Target locked (left panel) and response locked (right panel) CPPs split by accuracy 
emphasized (AE, top panel) and speed emphasized (SE, middle panel) and contrast 
level. Bottom panel shows F statistics and corresponding P values for a repeated 
measures 2-way ANOVA with contrast and SAT as factors, dots above top panel 
indicate significance after FDR correction. B: Response locked CPP amplitude 
topographic maps separated by accuracy emphasized (top panel), speed emphasized 
(middle panel) conditions averaged over all contrast conditions in 3 temporal epochs: 
from -200 ms to response onset, at response onset, or averaged from response onset 
to 200 ms after response onset. Topography for accuracy minus speed emphasized is 
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plotted in the bottom panel. C: Response-locked CPP amplitude for each SAT condition 
plotted separately for each contrast level (subplots are ordered from largest contrast 
decrement to largest contrast increment, with no change trials in the center; top panel). 
T statistic and corresponding p-value are plotted in the bottom panels, dots above 
panels indicate significance after FDR correction. Vertical line indicates response time. 
D: CPP amplitude at response onset decreases with sensory evidence, but not speed 
pressure. Amplitude at response onset shown here are averaged within contrast 
magnitudes and across increment and decrement conditions. E: Response time was 
subtracted from the time of CPP peak and averaged within contrast magnitudes-note 
that negative peak-to-response latencies indicate that peaks occurred before the 
response, and vice versa. Peak-to-response latencies for CPP amplitude are closer to 
zero with high levels of sensory evidence when accuracy is emphasized (left panel). 
Trials were median split by RT within SAT condition and collapsed over contrast 
conditions. We found graded peak-to-response latencies such that faster responses 
exhibited longer peak-to-response latencies (right panel). F: CPP amplitudes at 
response were averaged as in D, but here only trials in which RTs were equal for speed 
and accuracy conditions were considered (see methods). G: CPP peak-to-response 
latencies as in E, but here only trials in which RTs were equal for speed and accuracy 
conditions were considered. With matched RTs, peak-to-response latencies during 
accuracy emphasized blocks are not significantly different from zero regardless of 
contrast level. D-G: * indicates p<0.05, ** = p<0.01, *** = p<0.001 based on F statistics 
obtained with 2 way repeated measures ANOVA. 
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Figure 4: Both sensory evidence and speed pressure modulate CPP slope. Note: All 
error bars and shaded regions represent between subject standard error of the mean. 
A: We numerically approximated the derivative of the response-locked CPP. Timepoints 
for which slope on speed and accuracy trials are significantly different according to a 
paired t-test are plotted with dots above the top panel, while corresponding t-statistics 
and p-values are plotted in middle and bottom panels (subplots are ordered from largest 
contrast decrement to largest contrast increment, with no change trials in the center). B: 
Mean CPP slope leading up to a response increased with both speed pressure and 
sensory evidence. C: Peak CPP slopes, irrespective of timing, are qualitatively distinct 
from mean pre-response drift (left panel). This is quantitatively shown in a lack of an 
interaction effect. Trials were median split by RT within SAT condition and collapsed 
over contrast conditions, revealing that faster RTs also increase peak CPP slope. D: 
Speed pressure shifts peak-to-response latencies closer to the time of peak CPP slope, 
and this effect is more pronounced on large and medium contrast change trials (left 
panel). Furthermore, median splitting trials by RT within SAT condition and collapsed 
over contrast conditions revealed that faster RTs also bring peak-to-response latencies 
closer to zero (right panel). E: As in B, CPP slope leading up to a response increased 
with both speed pressure and sensory evidence, but here only Speed and Accuracy 
emphasized trials with equal RTs were considered. F: As in B, CPP slope leading up to 
a response increased with both speed pressure and sensory evidence, but here RTs 
were equated across speed and accuracy emphasized trials. However, note that these 
effects were not robust within contrast conditions, as can be seen qualitatively (t(19)’s = 
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0.66, 1.35, 0.42, and 1.89, p’s = 0.519, 0.191, 0.679, 0.074 for large, medium, small and 
no contrast change, respectively). G: As in D, speed pressure and low contrast shifts 
peak-to-response latencies closer to the time of peak CPP slope.  B-G: * indicates 
p<0.05, ** = p<0.01, *** = p<0.001 based on F statistics obtained with 2 way repeated 
measures ANOVA. 
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Supplementary Materials: 

Supplementary Results 

Target Locked Cento-parietal positivity (CPP) event-related potential  

We observed a robust CPP component that emerged after target onset and was 

maximal at central posterior electrode Pz (Figure 2A left, Figure 2C, Supplementary 

Figure 3A Middle row). As done with response-locked results, we collapsed across 

contrast decrement and increment trials to simplify statistical analyses since the effects 

of sensory evidence and speed goals were similar. We report results according to the 

magnitude of the contrast change (large, medium and small changes).  

 

We first report the peak amplitude for CPPs locked to the time of target onset. We found 

a decrease in peak CPP amplitude and an increase in target-to-peak amplitude latency 

with decreasing magnitude of contrast change (Supplementary Figure 3B; F(3, 57) = 

48.81, p < 10-12; Supplementary Figure 3D, F(3, 57) = 69.51, p < 10-15). Speed pressure 

significantly increased peak CPP amplitude (Supplementary Figure 3B; F(1, 19) = 

21.25, p <0.001), but had no effect on target-to-peak latency (Supplementary Figure 3D; 

F(1, 19) = 4.08, p = 0.06).  

 

Note that these contrast and SAT – dependent modulations in CPP could be precisely 

predicted by the peak of the normalized RT distributions (Supplementary Figure 3A Top 

Row). Specifically, the peak of the RT distribution decreased with increasing contrast 

change (Supplementary Figure 3C; F(3,57) = 318.09, p < 10-15) and decreased with 

speed pressure (F(1, 19) = 28.49, p < 10-4). Also, consistent with the result seen with 

CPP target-to-peak latency, the peak latency of the RT distributions increased as the 

degree of contrast change decreased Supplementary Figure 3E; F(3, 57) = 22.66, p < 

10-9) and we found a robust effect of speed goals on the peak latency of the normalized 

RT distributions (F(1, 19) = 36.82, p < 10-5).  

 

To control for this relationship between response execution and peak CPP amplitude, 

we matched mean RTs between the speed and accuracy conditions.  We still found a 

decrease in peak CPP amplitude and an increase in target-to-peak amplitude latency 
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with decreasing magnitude of contrast change (Supplementary Figure 3F, F(3, 57) = 

59.57; Supplementary Figure 3G, p < 10-15, F(3, 57) = 18.45, p < 10-7). However, there 

was no main effect of SAT on CPP peak amplitude or its latency (F(1, 19) = 3.66, p = 

0.071, F(1, 19) = 0.39, p = 0.54). This suggests that the increase in CPP amplitude and 

the marginal decrease in CPP latency with speed pressure was primarily driven by a 

narrower RT distribution (first row in Supplementary Figure 3A).  
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Supplementary Figure 1: Behavior and RT-locked early sensory evidence  
A: Here we plot hit rates (upper panel) and RTs (lower panel) collapsed across contrast 
separately for each of the seven contrast conditions (right panel). On no contrast 
change trials, hit rates were randomly assigned regardless of the subject’s response. 
Larger contrast changes lead to more accurate and faster responses. Additionally, 
subjects responded faster but less accurately with speed pressure (Purple line). 
Statistics were performed using a repeated measures ANOVA, and excluding no 
contrast change trials since the correct response is not well defined for these trials. B: 
SSVEP amplitude was recomputed after re-aligning each trial to the first frame of each 
cycle nearest to the RT on that trial. SSVEP amplitude from electrode Oz increased as 
a function of target contrast (indicated by black dots at top), while speed pressure did 
not significantly impact SSVEP amplitude after FDR correction. Bottom panels show F 
statistics and corresponding P values from a repeated measures 2 way ANVOA with 
contrast and SAT as factors. C: After splitting trials by RT, SSVEP amplitude from 
electrode Oz increased as a function of target contrast (indicated by black dots at top), 
while RT did not significantly impact SSVEP amplitude after FDR correction. Bottom 
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panels show F statistics and corresponding P values from a repeated measures 2 way 
ANVOA with contrast and RT as factors. D: After matching RTs, SSVEP amplitude from 
electrode Oz increased as a function of target contrast (indicated by black dots at top), 
while speed pressure did not significantly impact SSVEP amplitude after FDR 
correction. Bottom panels show F statistics and corresponding P values from a 
repeated-measures 2 way ANVOA with contrast and SAT as factors.  
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Supplementary Figure 2: RT-matched CPP results. Note: All error bars and shaded 
regions represent between subject standard error of the mean. A: RT matched target 
locked (left panel) and response locked (right panel) CPPs split by accuracy 
emphasized (AE, top panel) and speed emphasized (SE, middle panel) and contrast 
level. Bottom panel shows F statistics and corresponding P values for a repeated 
measures 2-way ANOVA with contrast and SAT as factors, dots above top panel 
indicate significance after FDR correction. B: RT matched response locked CPP 
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amplitude topographic maps separated by accuracy emphasized (top panel), speed 
emphasized (middle panel) conditions averaged over all contrast conditions in 3 
temporal epochs: from -200 ms to response onset, at response onset, or averaged from 
response onset to 200 ms after response onset. Topography for accuracy minus speed 
emphasized is plotted in the bottom panel. C: RT-matched target-locked CPP amplitude 
for each SAT condition plotted separately for each contrast level (top panel). T statistic 
and corresponding p-value are plotted in the bottom panels, dots above panels indicate 
significance after FDR correction. D: RT-matched response-locked CPP amplitude for 
each SAT condition plotted separately for each contrast level (top panel). T statistic and 
corresponding p-value are plotted in the bottom panels, dots above panels indicate 
significance after FDR correction. E: RT-matched response-locked CPP slope each 
SAT condition plotted separately for each contrast level (top panel). T statistic and 
corresponding p-value are plotted in the bottom panels, dots above panels indicate 
significance after FDR correction. C-E: Subplots are ordered from largest contrast 
decrement to largest contrast increment, with no change trials in the center. 
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Supplementary Figure 3: Target locked CPP metrics. Note: All error bars and 
shaded regions represent between subject standard error of the mean. A: RT 
distributions separated by speed and accuracy emphasis conditions and contrast 
change level. Distributions were normalized such that the y-axis represents the 
percentage of responses made at that time within condition (top panel). Target-locked 
CPP timecourses for each SAT condition plotted separately for each contrast level 
(middle panel). T statistic and corresponding p-value are plotted in the bottom panels, 
dots above panels indicate significance after FDR correction (Bottom Panels). RT 
matched target locked CPP amplitude. Subplots are ordered from largest contrast 
decrement to largest contrast increment, with no change trials in the center. B: Target-
locked CPP peak amplitude increases with both sensory evidence and speed pressure. 
Amplitudes here are averaged within contrast magnitudes and across increment and 
decrement conditions. C: As shown for CPP amplitude in B, the peak magnitude or 
concentration of the RT distribution also increases with both sensory evidence and 
speed pressure. D: The latency from target to CPP peak amplitude increases with 
contrast but is not affected by speed pressure. E: The latency, or value, of the peak of 
the RT distribution decreases with both contrast and speed pressure. F: Target-locked 
CPP peak amplitude as in B, but using only trials with matched RTs between speed and 
accuracy conditions. While there is still an increase of amplitude with sensory evidence, 
there is no longer an effect of speed pressure on peak amplitude. G: Target-locked CPP 
peak latency as in D, but using only trials with matched RTs between speed and 
accuracy conditions.  B-G: * indicates p<0.05, ** = p<0.01, *** = p<0.001 based on F 
statistics obtained with 2 way repeated measures ANOVA. 


