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Cortical chimera states predict epileptic seizures
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ABSTRACT

A chimera state is a spatiotemporal pattern of broken symmetry, where synchrony (coherent state) and asynchrony (incoherent state) coexist.
Here, we report chimera states in electrocorticography recordings preceding, by several hours, each of seven seizures in one patient with
epilepsy. Before the seizures, the onset channels are not synchronized, while the remaining channels are synchronized. During the seizures,
this pattern of behavior �ips and the nononset channels show a more asynchronous behavior. At a seizure o�set, synchrony can be observed
that might facilitate termination.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5139654

Worldwide, more than 50 million people live with epilepsy, a
common neurological disorder characterized by aberrant neu-
ronal �ring. While these periods are brief, they are unpredictable
and can be devastating for the patient and family. Substantial
research has focused on trying to predict seizures using machine
learning techniques, advanced signal processing, and other com-
putational tools. To date, however, there is no clearly successful
method. Consequently, it is imperative that we understand the
dynamics of neuronal activity that leads to seizures. One way
to further our understanding of epilepsy is through examining
the transition from desynchronized to highly synchronized cor-
tical states. We found that this transition can occur through an
extended hybrid or chimera state, where synchronization coexists
with desynchronization. In one patient, each seizure was reliably
preceded by chimera states that lasted up to 2 hours, suggesting a
new feature that can be used for long-term seizure forecasting in
some patients.

I. INTRODUCTION

Chimera states exhibit a hybrid structure of coexisting
synchronous (coherent) and asynchronous (incoherent) behavior.

This phenomenon was �rst described by Kuramoto and Battogtokh
in 20021 and named “chimera states” by Abrams and Strogatz in
2004.2 Panaggio and Abrams3 published a systematic review of the
�eld and collected several references to “bump states,” as they
were called before the invention of chimera states. In fact, in 1967,
Winfree4 discussed synchronization and mixed states. Experimen-
tal chimeras were reported by Tinsley et al.,5 Hagerstrom et al.,6

Nkomo et al.,7Abrams and Strogratz,2 and Dudkowski et al.,8 among
others. Outside laboratories, many real world chimeras have been
reported. These include unihemispheric sleep, ventricular �brila-
tion, power grids, social systems, neural networks, and the brain
(see Refs. 3 and 9 for references). Tognoli and Kelso10 report the
coexistence of metastable and stable states in electroencephalogra-
phy (EEG) data for cognitive tasks. Chimera states have also been
reported by Showalter and his group and a special issue in Chaoswas
dedicated to him in 2019.11

The connection between human epilepsy and chimeras has
been of recent interest, and networks of model neurons have been
studied.12–17The present study investigated this question and hypoth-
esized that the asynchrony-synchrony transition that leads to epilep-
tic seizures can be explained by the induction and dynamics of
chimera states. We analyzed electrocorticography (ECoG) data from
patients with intractable focal epilepsy, and found that in one patient,
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FIG. 1. Locations of the implanted ECoG electrodes. The locations of the onset channels were determined by a neurologist and are highlighted in orange here. Channel
numbers 1–8, 9–16, 17–24, and 25–32 refer to electrodes in the right posterior frontal, left cingulate, right posterior frontal, and right cingulate region, respectively.
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FIG. 2. DDA feature a1 corresponding to each of the
77 recording channels over time. The top panel shows
a1 over 100 hours of recording. The bottom panel
zooms in on the hour 100 to hour 120 of recording,
during which all seven seizures occurred. The record-
ing channels are sorted such that the onset channels,
as determined by the neurologist, are shown here as
channel numbers 1–32 and the nononset channels are
shown here as channel numbers 33–77. The onset of
each of the seven seizures is indicated by an arrow.
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FIG. 3. Phases of the DDA feature a1 correspond-
ing to each of the 77 recording channels over time.
The top panel shows the phase of a1 over 100 hours
of recording. The bottom panel zooms in on the hours
between 100 and 120 of recording, during which all
seven seizures occurred. The recording channels are
sorted such that the onset channels, as determined
by the neurologist, are shown here as channel num-
bers 1–32 and the nononset channels are shown here
as channel numbers 33–77. The onset of each of the
seven seizures is indicated by an arrow. Missing data
are marked in gray.
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FIG. 4. Phases for two time points, 10 min before and 10min after the fourth seizure: the onset channels (the first 32 channels) show desynchronization before the seizure
onset with coexisting synchronized nononset channels. After the seizure, all channels are well synchronized. The colors of the dots in the circular phase plots are identical
to those in the phase by channel number plots.

each seizure was consistently preceded by a chimera state. Therefore,
in this patient, chimera states were 100% predictive of seizures before
their onsets. Additionally, our analyses revealed that the brain stayed
in these chimera states for up to 2 hours prior to a seizure. This is, to
the best of our knowledge, the �rst direct evidence of chimera states
in the human epileptic brain.

II. DELAY DIFFERENTIAL ANALYSIS

Delay di�erential analysis (DDA) is a nonlinear computa-
tional method that combines di�erential embeddings with linear

and nonlinear nonuniform functional delay embeddings18–20 to relate
the current derivatives of a system to the current and past val-
ues of the system variables.21,22 Inspired by Max Planck’s “natural
units”,23 theDDAmodelmaps experimental data onto a set of natural
embedding coordinates.

The general nonlinear DDA model is

ẋ =

I∑

i=1

ai

N∏

n=1

xmn,i
τn

(1)
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FIG. 5. Seizure 4: Phases (upper panel)
for 77 channels and Kuramoto order
parameter (lower panel) from 1min before
seizure onset (dashed line) to 2 min after
the seizure onset.
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for τn,mn,i ∈ N0, where N is the number of delays (usually 2), I is
the number of terms (typically around 3), and xτn = x(t − τn), relat-
ing the signal derivative ẋ to the signal nonuniformly shifted in time.
We then used the coe�cients ai and the least square error ρ as fea-
tures. To restrict the complexity of the DDA model, most of the
terms in Eq. (1) were set to zero.We, therefore, considered here DDA

models with two delays τn, three terms, and one degree
∑

i mn,i ≤ 4
of nonlinearity.

DDA is a computational framework that (1) uses unprocessed
data so as not to disturb the nonlinear properties of the data, (2)
uses sparse models that match the macroscopic architecture of the
underlying dynamical system, (3) disregards amplitude information
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FIG. 6. Phases of all seven seizures centered
around the seizure onsets (one hour of data).
The channels are sorted by onset channels
(numbers 1–32) and nononset channels (33–77)
as determined by the neurologist.
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FIG. 7. Kuramoto order parameterO(t). (a) 100 hours of data from 77 channels and (b) zoomed in version for 20 hours around the seven seizures.

to focus on the dynamical aspects of the data, and (4) can be extended
for the detection of dynamical causality in the data to understand
information �ow in the system. Previous applications to brain data
have demonstrated that DDA e�ciently captured essential proper-
ties of brain dynamics and classi�ed brain states with a high level of
performance.24–26

III. EPILEPTIC SEIZURES

The patient demographics and characteristics are described in
Ref. 25.

A DDAmodel with minimum error was chosen using a genetic
algorithm (GA) tomaximally discriminate between preictal and pos-
tictal recordings. Around one million one second data segments
were used from one hour periods centered around the seizure onset
times.25

The selected DDA model is

ẋ = a1x1 + a2x2 + a3x
4
1, (2)

with xi = x(t − τi) and τ = (7, 10) δt, where δt = 1
fs
with the sam-

pling rate fs = 500Hz. This model (2) bifurcates at the seizure onset,
as shown in Ref. 25: It has a low error after seizure onset, but not
before. The delays were chosen in the same way: τ2 = 10 is a good
delay (low error) before seizures and τ1 = 7 is a good delay after
seizures. The combination τ = (7, 10)δt then proved to be a good
choice andwe, therefore, used thismodel for seizure characterization.
As shown in Refs. 25 and 27, the parameter a1 by itself is su�cient
for seizure analysis.

All of the analyses in this article were performed on 100 h
of recording from one patient (electrode locations are shown in
Fig. 1) with a sampling rate of 500Hz and 77 implanted electrodes

(one bad electrode was excluded from the analysis). The sliding
data windows were half a second long and the window shift was a
quarter second. The data were not preprocessed, except for normal-
izing each data window to zero mean and unit variance. Figure 2
shows the DDA feature a1, and Fig. 3 shows the phases of the
DDA feature a1 as a function of time for all 77 implanted elec-
trodes. The channel numbers were rearranged such that the �rst
32 channels are the onset channels as determined by the neu-
rologist and the remaining 45 channels are the nononset chan-
nels. Each of the seven seizures has a preceding time segment of
chimera states. These states last for around 2 hours (2.1951, 2.0418,
2.2509, 0.7108, 0.5645, 1.2334, and 2.6969 hours) before the seizure
onsets.

Figure 4 shows the phases of a1 at two time points: 10min
before and 10min after the fourth seizure. Before the seizure
onset, the onset channels (the �rst 32 channels) were desyn-
chronized, while the nononset channels were synchronized. In
contrast, all channels became synchronized after the seizure
o�set.

An expanded version of seizure 4 is shown in Fig. 5 (upper
panel). Microevents of seizurelike behavior can be observed before
the seizure onset. Interestingly, after seizure onset the mixed syn-
chrony/asynchrony behavior switches during the seizure. At seizure
termination most of the channels are immediately synchronized,
but a few need more time to synchronize with the rest. A movie
for this seizure from 5min before to 5min after the seizure onset
is shown in the supplementary material (S4.mp4). This behavior
is consistent across all seven seizures as can be seen in Fig. 6
where the phases of all seven seizures are plotted and centered
around the seizure onsets (one hour of data) as marked by the
neurologist.
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We calculated the order parameter as introduced by Kuramoto,1

O(t) =
1

N

N∑

k=1

eiφk(t) (3)

from a1(t) for all 77 implanted electrodes, where k is the rearranged
channel number. In Fig. 5 (lower panel), we show this order parame-
ter for a threeminute window around seizure 4. Figure 7(a) shows the
order parameter for the entire recording period, and Fig. 7(b) shows
the zoomed time frame around the seizures. The seizures have the
lowest order parameters followed by the time segments before the
seizures during which chimera states are observed, consistent with
Refs. 28 and 29.

In addition to the order parameter, which was computed from
phases, we introduced a new DDA order parameter that can be cal-
culated directly from DDA feature a1 (see Fig. 8): all pairwise L2
di�erences in a1 between channels were computed in a sliding win-
dow 5 s in duration (20 a1 values) and a shift of 250ms. A smaller
pairwise di�erence indicates higher degree of similarity and syn-
chronization between channels. The channels in the lower 30% of
the L2 distances were displayed as a function of time (see Fig. 8).
In a chimera state, the synchronized channels have values that are
between 0.5 and 1 [dark to light brown colors in Figs. 8(c) and 8(d)]
and in the desynchronized state, the channels have values that are
between 0 and 0.5 [light to dark gray colors in Figs. 8(c) and 8(d)].
In a nonchimera state, where all channels are either synchronized or
desynchronized the value for all channels should be one or zero [light

FIG. 8. DDA order parameter. (a)
100 hours of data from 77 channels, (b)
zoomed in version of 20 hours around the
seven seizures, (c) and (d) DDA order
values for the individual channels.
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colors in Figs. 8(c) and 8(d)]. The DDA order parameter is then the
sum of these values for each time window divided by N, where N is
the number of channels.

IV. CONCLUSIONS

We found chimera states in human ECoG data for one patient
that reliably preceded each of this patient’s seven seizures. These
chimeras can be seen in the DDA feature a1 and in the phases of
a1. We have so far analyzed 15 patients and only found chimeras in
one patient. This might be because we used the same delays for all
patients. We restricted our analysis to this one delay pair because of
the amount of data to be analyzed. We, therefore, developed a DDA
order parameter that detects chimera states in a completely automatic
manner. With such an automatic procedure, we hope to �nd more
chimera states in other patients by looking at more delay pairs.

Up to now, chimera states were reported in neuronal and
epilepsy models. The �ndings in this paper are the �rst evidence of
chimeras in the human brain.

SUPPLEMENTARY MATERIAL

See the supplementary material for a movie of the phases of
seizure 4 from 5min before to 5min after the seizure onset.
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