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ABSTRACT 26 

Consciousness is a fundamental component of cognition,1 but the degree to which higher-27 

order perception relies on it remains disputed.2,3 Here we demonstrate the persistence of learning, 28 

semantic processing, and online prediction in individuals under general anesthesia-induced loss 29 

of consciousness.4,5 Using high-density Neuropixels microelectrodes6 to record neural activity in 30 

the human hippocampus while playing a series of tones to anesthetized patients, we found that 31 

hippocampal neurons could reliably detect oddball tones. This effect size grew over the course of 32 

the experiment (~10 minutes), consistent with learning effects. A biologically plausible recurrent 33 

neural network model showed that learning and oddball representation are an emergent property 34 

of flexible tone discrimination. Last, when we played language stimuli, single units and 35 

ensembles carried information about the semantic and grammatical features of natural speech, 36 

even predicting semantic information about upcoming words. Together these results indicate that 37 

in the hippocampus, which is anatomically and functionally distant from primary sensory 38 

cortices,7 complex processing of sensory stimuli occurs even in the unconscious state.   39 
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MAIN TEXT 40 

 41 

Neuropixels recordings in the human hippocampus 42 

We performed intraoperative hippocampal recordings with Neuropixels probes6 in five 43 

patients (Supplemental Table 1) undergoing anterior temporal lobectomies for drug resistant 44 

epilepsy. One patient also had recordings at two separate depths in the middle temporal gyrus 45 

prior to the neocortical resection. Across these seven recordings, we isolated 555 units (295 46 

single units, 260 multi-units; mean: 79.3 units per recording; range: 22-172). Hippocampal 47 

recordings were conducted in the anterior body after resection of the lateral temporal cortex and 48 

prior to resection of the mesial temporal structures such as parahippocampal gyrus and amygdala 49 

(Figure 1A). In the hippocampus, we isolated 405 units (157 single units, 248 multi-units, mean: 50 

81 units per recording; range: 22-172). Based on coregistration between anatomical maps and 51 

preoperative imaging, postoperative high-resolution CT, and electrophysiological properties, we 52 

expect our units to be drawn from the dentate gyrus, CA4, and CA1 (Figure 1B-D).8 53 

Average firing rates were lower for hippocampus (1.6 +/- 1.2 Hz) than for temporal 54 

cortex (2.5 +/- 1.7 Hz, p<0.0001, Student’s t-test).9 Motion artifacts, a major challenge for 55 

human cortical Neuropixels recordings,10 were markedly less conspicuous in hippocampal 56 

recordings than in the cortical recordings (Figure 1E). This increased stability may be due to the 57 

central location of the hippocampus within the brain, and because it is anchored by the dura of 58 

the middle fossa via the parahippocampal gyrus. Consistent with this hypothesis, the reduction in 59 

motion was especially clear when we compare the respiratory and heartbeat frequency bands 60 

(p=0.001, t-test on power between 0.1 to 3 Hz of motion trajectories between the hippocampal 61 

and cortical recordings). After a brief baseline recording, we conducted recordings during 62 
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presentation of auditory stimuli composed of pure tones (3 patients) or a continuous podcast (2 63 

patients, Figure 1F). 64 

 65 

Auditory environment monitoring in the anesthetized patient 66 

The ability to recognize patterns and detect violations of those patterns is a hallmark of 67 

cognition. In the classic oddball task,11,12 participants are presented with a series of stimuli that 68 

constitute a pattern (e.g., a series of tones of the same frequency) interspersed with deviant 69 

“oddballs”. In three of the hippocampal recordings (P4, P5, and P6), we played a series of 100 70 

ms pure tones; 20% were oddballs (higher or lower frequency than standard, Figure 2A, 71 

Methods). Most units (n=122/172, 70.9%, signed-rank test, α=0.05) showed tone-evoked 72 

responses (Figure 2B), consistent with established auditory responses within hippocampus.13 73 

Neural responses to tones often showed a biphasic temporal firing rate profile (Figure 2B). 74 

Across all units, response latencies showed a clear bimodal temporal dynamic (Gaussian Mixture 75 

Model fit via Expectation Maximization, Figure 2C). Hippocampal units encoded tone 76 

frequency (n=39/172, 22.7% of units, rank sum test, α=0.05, Figure 2D).  77 

Having established auditory responses despite the anesthetic state, we next examined the 78 

representation of stimulus features. For two patients, we balanced tone frequency and oddball 79 

status (Figure 2A, n=150 units). At the single unit (Figure 2E) and population (Figure 2F) 80 

levels, neuronal responses differentiated standards from oddballs. This divergence was most 81 

notable within the first 300 ms, with 24.7% (n=37/150) of units signaling oddballs. Thus, further 82 

analyses focused on this first time segment. Local field potentials (LFPs) also showed oddball-83 

evoked responses, observed as a negative deflection in the evoked response potential (ERP, 84 

Figure 2G) and an increase in gamma amplitude (Figure 2H).  85 
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Next, z-scored sensory responses for all units were modelled as a function of tone 86 

frequency, context (standard vs. oddball), and their interaction using linear regression. We 87 

observed comparable encoding for all terms: 29.3% of units showed tone encoding; 24.7% 88 

showed oddball encoding; 22.7% showed an interaction. The absolute values of the beta weights 89 

for the oddball term were greater than the corresponding tone and mixed selectivity terms (paired 90 

t-test on absolute values, p<0.0001 for both, Figure 2I). We found similar proportions of units 91 

with a significant oddball effect (n=43) in P5 (37/127, 29.1%) and P6 (6/23, 26.1%) (p=0.8, 𝞆𝞆2 92 

test). Mean broadband LFP power and gamma band amplitude also demonstrated tone, oddball, 93 

and mixed selectivity at similar rates across channels (broadband LFP: 40.9%, 47.2%, and 94 

46.0%; gamma: 20.1%, 17.6%, and 18.7%, respectively). 95 

Leveraging the power of large-scale recordings, we used a 10-fold cross-validated 96 

support vector machine (SVM) to decode stimulus features on a trial-by-trial level across the 97 

neuronal population. Tone identity was robustly represented in both patients across units, 98 

broadband LFP, and gamma power, with mean accuracy ranging between 0.6 and 0.76 (p<0.001 99 

for all, t-test. Figure 2J). Oddball identity could also be decoded above chance for both patients 100 

(p<0.05 for all except for ERP and unit decoding in P6), albeit at lower levels, ranging from 0.52 101 

to 0.56 (accuracy rates on shuffled data ranged from 0.496 to 0.503).  102 

 103 

Hippocampal signatures of learning in the unconscious state 104 

While the oddball task by definition relies on a working memory of the statistical 105 

distribution of recent tones,14 this does not prove that the unconscious hippocampus was learning 106 

the task structure. We thus examined the temporal evolution of the oddball identity 107 

representation. In oddball-responsive units (n=43), we found that the oddball response grew in 108 
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magnitude over the course of the experiment (~10 minutes, example unit, Figure 3A). Splitting 109 

our task into halves, we found a significant increase in oddball encoding for both patients (P5: 110 

p=0.01, P6: p<0.001, t-test, Figure 3C). Surprisingly, we also observed a concomitant decrease 111 

in frequency encoding, raising the possibility of compensatory mechanisms (p<0.001, t-test for 112 

both) (Figure 3B). Using a sliding window of subsets of 50 trials, we found a continuous 113 

increase in oddball decoding accuracy across the approximately 10-minute duration of the 114 

experiment (p<0.001, Pearson’s correlation, Figure 3D, purple). Again, this increase in oddball 115 

performance was accompanied by an initial decrease in tone encoding (p<0.0001, Figure 3D, 116 

green), 15 demonstrating the neural population was sacrificing its tone responses for the sake of 117 

oddball representations over the course of the experiment, suggesting that the hippocampal 118 

responses were shifting to represent the salient features of the stimulus.16 119 

We created neural vectors of the average standard tone response as well as each 120 

individual oddball trial (43-dimensional vectors composed of the mean response of the oddball 121 

units). We found a gradual divergence in Euclidean distance between standard and oddball 122 

vectors over the course of the session (r=0.34, p=0.007, Pearson’s correlation; Figure 3E, left). 123 

Discriminability was even stronger when considering cosine angle, indicating the effect is not 124 

merely a consequence of a response gain in oddball cells (r=0.5, p=0.0002; Figure 3E, right). 125 

These effects were mostly consistent for individual patients (P5 distance: r=0.25; p=0.056, angle: 126 

r=0.43 p=0.002; P6 distance: r=0.32, p=0.012, angle: r=0.48; p=0.0002). These results indicate 127 

that the hippocampus does not simply improve encoding using gain modulation;17 instead, 128 

oddball responses reflect a rotation of the neural population vector in a high dimensional space, 129 

meaning that oddball learning alters the warping of the neural response manifold.18 Thus, 130 

complex reshaping of responses can occur even under general anesthesia.19,20  131 
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To gain further mechanistic insight at the level of individual units, we turned to a 132 

continuous-rate recurrent neural network (RNN) trained to perform a signal-detection task 133 

similar to the task used for the human Neuropixels data (Figure 3F).21 The network model 134 

underwent three stages of training, simulating the different contexts used in the experimental 135 

data, with the prevalence of specific tones varied at each stage (Figure 3G, H, Methods). Tone 136 

A was presented to the network in 80% of the trials in the first stage, followed by a washout 137 

period, and then a third stage with probabilities reversed relative to the first. By the end of 138 

training (range of 1400 to 2600 trials) the model was able to reliably differentiate tone identities 139 

(Figure 3H). Notably, despite being only explicitly trained on tone frequency discrimination, the 140 

model was able to perform not only frequency discrimination (tone frequency, p<0.005 signed 141 

Wilcoxon test vs. shuffled data) but also context (oddball identity, p<0.005, signed Wilcoxon test 142 

vs. shuffled data, Figure 3I). The model also recreated the pattern observed in the Euclidean and 143 

vector angle distance between standard and oddball representations (Figure 3J), suggesting that 144 

the divergence of representations can be due to local computations rather than inherited from 145 

other networks.  146 

 147 

Unconscious encoding of semantics and grammar in the hippocampus 148 

We next tested whether the unconscious hippocampus could perform even higher order 149 

functions associated with parsing semantic and syntactic features of natural speech. In two 150 

participants (P6 and P8), we recorded neural activity while playing 10-20 minutes of podcast 151 

episodes (see Methods22). We aligned neural activity to word onset and offset (n=3024 words 152 

for P6 and n=1565 words for P8), and computed word-evoked neural responses (example unit, 153 

average response to all words presented, Figure 4A). Given the oddball effects described above, 154 
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we first hypothesized that the brain would respond differentially based on word lexical 155 

frequency, which we defined using a standard database.23 All 195 units had a robust correlation 156 

between lexical frequency and neuronal firing rate (Figure 4B, mean r=0.55+/- 0.08, Spearman’s 157 

correlation, α<0.05). To address possible confounds between word duration and frequency, we 158 

reran the analysis with subsets of words within a limited duration range, i.e. 0-200 ms, 200-400 159 

ms, 400-600 ms, and consistently observed a positive correlation (p<0.001 for combined units). 160 

Additionally, a linear model that incorporated both logarithmic word duration and logarithmic 161 

word frequency still found significance in word frequency as a predictor of firing rate (p<0.001, 162 

t-test on coefficients). This correlation could not be solely explained by difficulty in lexical 163 

access, as there was also a consistent relationship of the neural responses with the relative 164 

surprise of each word (r=0.11 +/- 0.03, 187/195 units significant at α<0.05), a metric that 165 

evaluates the relative probability of each word as a function of the prior words.24  166 

These results suggest that the unconscious hippocampus has access to the semantic 167 

information conveyed by each word. To explicitly test this possibility, we regressed the firing 168 

rates of each neuron against the semantic embeddings of each word that demonstrated a response 169 

(see Methods).22,25,26 In semantic embedding space, similar words (e.g. ‘dog’ and ‘cat’) are 170 

closer (Euclidean distance, d=1.8) than dissimilar words (e.g. ‘dog’ and ‘pen’, d=2.5). Using 10-171 

fold cross-validation, we found that the RMSE of a linear model outperformed shuffled data in 172 

all units (α=0.05, one tailed t-test on real versus shuffled RMSE Figure 4C), with an average 173 

correlation between true and predicted firing rates of 0.46 +/- 0.07 (n=195 units). However, 174 

given that conversational English has many words that are repeated these results could be 175 

confounded by the fact that cells had consistent responses to words, perhaps even matching 176 

acoustic features. To show that units generalize across word embeddings, we re-ran the analysis 177 
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using only unique words (n=746 and 573 unique words for P5 and P6, respectively). We found a 178 

significant result in 84.1% of the recorded units (159/189 units with at least 50 words that had a 179 

non-zero response), with an average correlation of r=0.17 +/-0.08, Figure 4D). In other words, it 180 

is possible to predict the firing rate of units to a given word based on responses to other words by 181 

leveraging their similarities in semantic space,27 demonstrating that the unconscious 182 

hippocampus has access to abstract semantic relationships between words. 183 

We then analyzed the representation of word features. We semantically categorized each 184 

word into one of 12 possible groups (Figure 4E).22 Nearly all units (193/195) showed some form 185 

of semantic category selectivity (α=0.05, Kruskal Wallis test for any difference between 186 

semantic categories). Rank-sum tests for each category versus all others showed that units were 187 

selective for multiple semantic categories, consistent with our previously reported findings in 188 

awake patients (corrected for multiple comparisons, α<0.05).22 Specifically, 165/195 (84.6%) 189 

units were able to discriminate between at least two of the twelve semantic categories and 76/195 190 

(39.0%) were able to discriminate across at least four (Figure 4G), with a median of three 191 

categories per neuron. We also investigated encoding of grammatical features. We classified 192 

each word into a part of speech using the Stanford CoreNLP toolkit28 (Figure 4H, n=2906 words 193 

for P5 and 1497 for P8). We found that 191/195 units carried information about part of speech 194 

(α=0.05, Kruskal Wallis test). Again, there was broad representation of different categories 195 

(Figure 4I). Interestingly, nearly all units (P6: 82.6%; P8: 94.8%) distinguished nouns from non-196 

nouns, but only a few (P6: 4.3%; P8: 5.8%) distinguished verbs from non-verbs, consistent with 197 

the greater role of the hippocampus in object over action representations.29 Overall, the median 198 

number of categories represented was four (out of 11 possible, Figure 4J), with 178/195 (91.3%) 199 

units discriminating at least two categories and 100/195 (51.30%) discriminating across at least 200 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2025. ; https://doi.org/10.1101/2025.04.09.648012doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.09.648012


four. Interestingly, we found a strong correlation between the number of semantic categories and 201 

the number of part of speech categories represented across neurons (r=0.38, p<0.001 Spearman’s 202 

correlation) suggesting that language responsive neurons can represent multiple features, with no 203 

evidence of separation of the two tasks.  204 

Relying on statistical differences in distributions, however, would not be sufficiently 205 

accurate for online processing of speech. To study the ability of the hippocampal network to 206 

provide real time information about language we examined its decoding ability on a word-by-207 

word basis. We used a SVM to compare each category against all others. We found that all 208 

categories in both semantics and part of speech were decodable at the level of individual words 209 

(p<0.001 vs. shuffled data performance at chance rates of 0.5, Figure 4K and L). Semantic 210 

categories had a higher average classification accuracy (60.5 +/- 4.0%) than part of speech 211 

categories (56.5 +/- 5.3%, p=0.03, t-test). These results indicate that both semantic and syntactic 212 

information (independent of the acoustic features) is encoded in real time within the unconscious 213 

hippocampus. 214 

We next asked whether the unconscious hippocampus could represent recent or 215 

upcoming words, a fundamental aspect of speech comprehension.30 We reran our linear 216 

regression analysis (Figure 4C, D) but instead of predicting neural data using the word being 217 

played, we tested previous and upcoming words. Here we found that neural responses 218 

corresponded to not only semantic features of prior words (Figure 4M, negative indices), which 219 

could be due to short term memory31 or even hysteresis back to baseline, but also to the 220 

semantics of future words32 (Figure 4M, positive indices). Future words were able to be decoded 221 

nearly as well as past words, though with a 21.3% larger tail for past words at τpast=0.97 versus 222 

future words at τfuture=0.81. These findings demonstrate that not only is recent speech being 223 
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actively tracked, it is also being used to predict future words, a high level cognitive function 224 

crucial to speech comprehension that depends on engagement of the language network.33 225 

Notably, this analysis also precludes the possibility that the responses are solely due to the 226 

underlying acoustics, as it disconnects the speech features from the ongoing auditory 227 

information.  228 

 229 

DISCUSSION 230 

Our study identified neural signatures of learning, semantic processing, and prediction in 231 

the unconscious human hippocampus, core cognitive functions often assumed to be absent in the 232 

unconscious state.34 These analyses do not have obvious explanations based solely on low-level 233 

sensory responses. The long and slow increase in oddball detection over the course of 10 minutes 234 

is unlikely to reflect adaptation or repetition suppression,35 and can even emerge from local 235 

circuit properties based on our modelling results. Additionally, the representation of semantic 236 

features of adjacent words requires more than just the ongoing acoustic information. We 237 

therefore show that within anesthetic induced unconsciousness it is not sensory integration that is 238 

completely blocked36 but rather its ability to consolidate into explicit memories.37,38 These results 239 

provide the foundation for previous reports of post-anesthesia implicit recall,39,40 which would 240 

depend on sensory processing and memory despite the absence of consciousness.  241 

These results also complement a growing body of work showing the central importance 242 

of the hippocampus in language processing.22,41,42 While the hippocampus is not considered part 243 

of the classic cortical language network,7 its ability to flexibly associate different features43,44 and 244 

perform online prediction,45 as well as its established importance for pattern separation and 245 

completion,46 make it a likely site for semantics and composition. In this study we not only 246 
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provide further evidence for semantic and grammar representations within the hippocampus, we 247 

even demonstrate continuous prediction of upcoming words. Our results therefore extend these 248 

language models of hippocampal computations by showing they are sufficiently robust that they 249 

do not even require conscious awareness.  250 

 251 

The datasets generated during and/or analysed during the current study are available from the 252 

corresponding author on reasonable request. 253 

Supplementary Information is available for this paper. 254 

  255 
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 359 
Figure 1. Intraoperative Neuropixels recordings in the human hippocampus.  360 
A. Photograph of the hippocampal brain tissue with the inserted Neuropixels probe during 361 
intraoperative recording (middle right), with the anatomical orientation indicated below. B. Top: 362 
axial (left) and coronal (right) sections of a T1 MRI for P8. Crimson dot indicates probe entry 363 
site, and arrows demonstrate trajectory of probe. Bottom: Probe entry site for P8 warped onto 364 
canonical brain, illustrated with a crimson dot within the hippocampus shown in yellow. C. 3D 365 
reconstruction of microCT identifying the probe within resected hippocampal tissue (top) with 366 
coronal slice identifying the probe penetrating the hippocampus (bottom). Superior globule is 367 
fibrin glue adhering to the ependymal lining. D. Example waveforms from all units (n=127) 368 
within a single hippocampal recording (P5). Each unit is represented by the average waveforms 369 
at the three maximal electrodes. E. Spiking activity wherein points represent the amplitude and 370 
location of individual spikes along the probe as a function of time and depth pre (left) and post 371 
(right) motion correction in a cortical (top) and hippocampal (bottom) recording. 0 indicates the 372 
bottom of the probe and the most lateral contact. MTG: Middle Temporal Gyrus, HPC: 373 
Hippocampus F. Task schematic. Patients listen to either pure tones (P4, P5, P6) or podcasts (P6, 374 
P8) during high density neural recordings. 375 
.   376 
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 377 
Figure 2. Oddball responses in the anesthetized human hippocampus.  378 
A. Schematic of the auditory oddball task (n=3 patients). Each trial consisted of pure tones with 379 
predetermined tone frequencies played at different probabilities. For two of the patients, the 380 
oddball and standard tone identities were interchanged halfway through i.e. the tone that was 381 
oddball for the first set (top) is the standard for the second set (below), and vice versa. B. Mean 382 
response to tone onset, averaged across all units (n=172 units, 3 patients). Vertical red bar 383 
indicates tone presentation (100ms), horizontal grey bar indicates baseline +/- standard error of 384 
the mean (SEM) and the shading represents +/- SEM. C. Distribution of the tone response onset 385 
latencies across all units. A mixed Gaussian model fit to the distribution is shown in orange, with 386 
peaks at 142.5 ms and 633.2 ms, trough at 291 ms. D. Distribution of d-prime values for units 387 
selective for tone frequency. E. Example unit that is selective for oddball trials. Top: Average 388 
response (spike rate, Hz) to oddball in green and standard in black, shading represents SEM, red 389 
bar is the tone presentation. Bottom: trial-wise spike raster plot, color-coded as oddball trials 390 
(green) and standard trials (black). F. Average neuronal response across all units (n=150 units, 391 
P5 and P6 to oddball (green) vs. standard (black) tones. Shading represents +/- SEM, red bar is 392 
tone presentation. G. Average ERP (μV) across 10 channels from each patient. Shading 393 
represents +/- SEM, red bar is tone presentation. H. Average gamma amplitude (μV) across 10 394 
channels from each patient. Shading represents +/- SEM, red bar is tone presentation. I. Violin 395 
plot showing the distribution of β coefficients obtained from a linear regression model run per 396 
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unit, to determine neuronal response modulation as a function of tone frequency (tone frequency 397 
β, purple, left) oddball identity (oddball β, green, middle), and an interaction/mixed term (mixed 398 
β, yellow, right). Asterisks denote statistical significance of difference in absolute amplitude. J. 399 
Box and whisker plot of encoding accuracy for tone frequency (purple) and oddball identity 400 
(green), obtained using a Support Vector Machine (SVM) decoder for P5 and P6, across Units 401 
(left), ERP (middle), and Gamma power (right) after tone presentation. Pluses are outliers and 402 
asterisks denote statistical significance relative to change.  403 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2025. ; https://doi.org/10.1101/2025.04.09.648012doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.09.648012


 404 
Figure 3: Evolution of the oddball representation across the neuronal population in experimental 405 
data and an RNN model.  406 
A. Responses to tones as a function of oddball identity and index in an example unit. Red bar 407 
indicates tone presentation. B. Accuracy of tone frequency identity decoding across the neuronal 408 
population for patients P5 and P6, for the first half trials (left) or second half trials (right), 409 
combined across both blocks. Statistically significant differences indicated with an asterisk C. 410 
Similar to B but for oddball identity. D. Decoding accuracy as a function of trial position across 411 
both patients (n=43 oddball-responsive units). Each point represents SVM accuracy within a set 412 
of 50 trials starting at the index location. Decoding accuracy for tone frequency shown in purple, 413 
and for oddball identity shown in green, along with line fits shown as dashed lines in purple and 414 
green respectively. E. Euclidean distance (left) and Cosine angle (right) between standard and 415 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2025. ; https://doi.org/10.1101/2025.04.09.648012doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.09.648012


oddball neuronal population response vectors, computed for each oddball trial. Each datapoint 416 
(in grey) indicates the value of the Euclidean distance (left) and cosine angle (right) per trial, 417 
with the lines showing a linear fit with 95% confidence intervals F. Schematic of the RNN 418 
model trained to differentiate between two different tone frequencies, indicated as Tone A and 419 
Tone B. G. Training paradigm for the RNN as compared to the human experiment. H. Network 420 
response across trials for a single example RNN model unit for the three training phases. I. 421 
Decoding accuracy of RNN for tone frequency (purple, left) and oddball identity (green, right). 422 
J. Evolution of Euclidean distance (brown) and cosine angle (pink) between oddball trials and 423 
the average standard trial across the RNN population. Shading represents SEM across 10 runs.  424 

425 
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 426 
Figure 4. Neuronal responses to natural language in the anesthetized human hippocampus. 427 
 A. Average neuronal response (spike rate, Hz) of an example unit across all words presented 428 
(n=3019 words), shown aligned to word onset, indicated with a vertical dashed line. Shaded area 429 
represents +/- SEM. Activity more than 50 ms past word offset was removed to avoid 430 
contamination from adjacent words. B. Neuronal responses (spike rate, Hz) as a function of word 431 
frequency (n=3019 words) shown for each neuron, each data point corresponds to an individual 432 
unit and word, color-coded according to patient (ochre, P6; turquoise, P8). Example words 433 
indicated with black dots, and the dashed line corresponds to a linear fit across patients. C-D. 434 
Distribution of Pearson's correlation coefficient for predicted vs. actual firing rates for all words 435 
(C) and unique words (D), data shown per patient. E. Distribution of words within semantic 436 
categories sorted by frequency found within the podcast episodes, shown per patient. F. 437 
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Percentage of units selective for each semantic category, compared to all other semantic 438 
categories, shown per patient. G. Number of categories decoded by individual units, shown per 439 
patient. H-J. Similar to E-G but for part of speech categories. K-L. Box plots for decoding 440 
accuracy of a SVM across units for semantic (K) and part of speech (L) categories, shown per 441 
patient. Dashed lines represent chance and pluses indicate outliers. M. Correlation coefficients 442 
for predicted vs. actual firing rates as a function of word index, index=0, current word, positive 443 
indices correspond to future words (right) and negative indices to past words (left), shown per 444 
patient. 445 
 446 
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Methods 447 

Patient recruitment 448 

Experiments were conducted according to protocol guidelines approved by the Institutional 449 

Review Board for Baylor College of Medicine and Affiliated Hospitals, Houston TX (H-50885). 450 

All recruited patients were diagnosed with drug resistant temporal lobe epilepsy and were 451 

scheduled to undergo an anteromesial temporal lobectomy for seizure control. All patients 452 

provided written informed consent to participate in the study and were aware that participation 453 

was voluntary and would not affect their clinical course. Included patients’ age ranged from 31-454 

54 years old (average 43.6 +/- 8.4), with three females and two male patients. Two resections were 455 

on the left side, and three were on the right. None of the patients reported explicit memory of 456 

intraoperative events after the case when discussed in the post-operative care unit or while 457 

recovering in the hospital the next day. 458 

Neuropixels Data Acquisition Setup and Intraoperative Recordings 459 

Neuropixels 1.0-S probes (IMEC) with 384 recording channels (total recording contacts = 960, 460 

usable recording contacts = 384) were used for recordings (dimensions: 70μm width, 100μm 461 

thickness, 10mm length). The Neuropixels probe, consisting of both the recording shank and the 462 

headstage, were individually sterilized with ethylene oxide (Bioseal, CA).1 Our intraoperative data 463 

acquisition system included a custom-built rig including a PXI chassis affixed with an 464 

IMEC/Neuropixels PXIe Acquisition module (PXIe-1071) and National Instruments DAQ (PXI-465 

6133) for acquiring neuronal signals and any other task-relevant analog/digital signals 466 

respectively. Our recording rig was certified by the Biomedical Engineering at Baylor St. Luke’s 467 

Medical Center, where the intraoperative recording experiments were conducted. A high-468 
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performance computer (10-core processor) was used for neural data acquisition using open-source 469 

software such as SpikeGLX 3.0 and OpenEphys version 0.6x for data acquisition (AP band 470 

(spiking data), band-pass filtered from 0.3kHz to 10kHz was acquired at 30kHz sampling rate; 471 

LFP band, band-pass filtered from 0.5Hz to 500Hz, was acquired at 2500Hz sampling rate). We 472 

used a “short-map” probe channel configuration for recording, selecting the 384 contacts located 473 

along the bottom 1/3 of the recording shank.  474 

Audio was played via a separate computer using pre-generated wav files and captured at 30kHz or 475 

1,000kHz on the NIDAQ via a coaxial cable splitter that sent the same signal to speakers adjacent 476 

to the patient. MATLAB (MathWorks, Inc.; Natick, MA) in conjunction with a LabJack (LabJack 477 

U6; Lakewood, CO) was used to generate a continuous TTL pulse whose width was modulated by 478 

the current timestamp and recorded on both the neural and audio datafiles. Online synchronization 479 

of the AP and LFP files was performed by the OpenEphys recording software. Offline 480 

synchronization of the neural and audio data was performed by calculating a scale and offset factor 481 

via a linear regression between the time stamps of the reconstructed TTL pulses and confirmed 482 

with visual inspection of the aligned traces.  483 

Acute intraoperative recordings were conducted in brain tissue designated for resection based on 484 

purely clinical considerations. The probe was positioned using a ROSA ONE Brain (Zimmer 485 

Biomet) robotic arm and lowered into the brain 5-6mm from the ependymal surface using an 486 

AlphaOmega microdrive. The penetration was monitored via online visualization of the neuronal 487 

data and through direct visualization with the operating microscope (Kinevo 900). Reference and 488 

ground signals on the Neuropixels probe were acquired separately by connecting to a sterile 489 

microneedle placed in the scalp (separate needles inserted at distinct scalp locations for ground 490 

and reference respectively).  491 
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For all patients (n=5), we conducted neuronal recordings under general anesthesia for at most 30 492 

minutes as per the experimental protocol. All patients were under total intravenous anesthesia 493 

(TIVA), with propofol as the main anesthetic per experimental protocol. Inhaled anesthetics were 494 

only used for induction and stopped at least an hour prior to recordings. The anesthesiologist 495 

titrated the anesthetic drug infusion rates so that the BIS monitor (Medtronic; Minneapolis, MN) 496 

value was between 45 and 60 for the duration of the surgical case.2 Of note, BIS values range 497 

between 0 (completely comatose) and 100 (fully awake), with standard intraoperative values to be 498 

between 40 and 60. In the first patient (P3), we first conducted neural recordings in the temporal 499 

cortex (middle temporal gyrus). We then carried out hippocampal recordings in the same patient 500 

after resection of the lateral temporal lobe but prior to any resection of the hippocampus. For the 501 

remaining patients (P4, P5, P6, and P8), only hippocampal recordings were performed. 502 

For P4, P5, and P6, we recorded neuronal activity during passive auditory stimuli presentation. 503 

For P4, a sequence of auditory stimuli (pure tones; f1=1kHz, f2=3kHz) were presented with 80-504 

20 probability distribution, with the less frequent auditory stimulus serving as an “auditory oddball 505 

stimulus” (n=300 trials). For P5 and P6, a sequence of auditory stimuli (pure tones; f1=200Hz, 506 

f2=5kHz) were presented with 80-20 probability distribution, while counterbalancing the tone 507 

frequency designated as the auditory oddball stimulus (first half, n=150 trials, f2 is auditory 508 

oddball; second half, n=150 trials, f1 is auditory oddball). We interleaved a washout period (30 509 

trials) using the same auditory stimuli but presented at 50-50 probability distribution in between 510 

the two counterbalanced tasks. The auditory pure tone stimuli were presented for a 100 ms 511 

duration, and the intertrial interval for the auditory oddball task was randomly drawn from between 512 

1-3s. The different frequency waveforms were amplitude-matched.  513 
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For P6 and P8 we also recorded neuronal activity during podcast episodes. P6 listened to three 514 

stories, each approximately 7 minutes long, taken from The Moth Radio Hour 515 

(https://themoth.org/podcast). The stories were “Wild Women and Dancing Queens”, “My 516 

Father’s Hands” and “Juggling and Jesus”. Each episode consists of a single speaker narrating an 517 

autobiographical story. P8 listened to “Why We Should NOT Look for Aliens - The Dark 518 

Forest”, an educational video created by the Kurzgesagt group (Kurzgesagt GmbH; Munich, 519 

Germany) (https://www.youtube.com/watch?v=xAUJYP8tnRE). The selected stories were 520 

chosen to be varied, engaging, and linguistically rich.  521 

Micro CT 522 

Since recordings were only performed in tissue planned for resection, we first removed a small 523 

cube of tissue around the probe and then proceeded with the remainder of the resection. The cube 524 

specimens were processed following previously described methods.3 In brief, resected specimens 525 

were fixed in 4% PFA for 16 hours at 4°C. They were then stabilized using a modified Stability 526 

buffer (mStability), containing 4% acrylamide (BIO-RAD, cat. no. 1610140), 0.25% w/v VA044 527 

(Wako Chemical, cat. no. 017-19362), 0.05% w/v saponin (MilliporeSigma, cat. no. 84510), and 528 

0.1% sodium azide (MilliporeSigma, cat. no. S2002). Samples were equilibrated in the hydrogel 529 

solution for 16 hours at 4°C before undergoing thermo-induced crosslinking at -90kPa and 37°C 530 

for 3 hours. Following crosslinking, excess hydrogel solution was removed, and specimens were 531 

washed four times with 1X PBS. Next, samples were immersed in 0.1N iodine and incubated with 532 

gentle agitation for 24 hours at room temperature before being embedded in agarose and imaged 533 

using a Zeiss Xradia Context micro-CT at 3µm/voxel resolution. The acquired back-projection 534 

images were reconstructed using Scout-and-Scan Reconstructor (Carl Zeiss, Ver. 16.8) and 535 

converted to NRRD format via Harwell Automated Recon Processor (HARP, Ver. 2.4.1),4 an 536 
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open-source, cross-platform application developed in Python. The 3D volumes were analyzed, and 537 

optical sections were captured using 3D Slicer.5  538 

Neuronal Data Processing 539 

Motion-correction 540 

We utilized previously developed and validated motion estimation and interpolation algorithms 541 

to correct for the motion artifacts from brain movement.6 Motion was estimated via the DREDge 542 

software package (Decentralized Registration of Electrophysiology Data software, 543 

https://github.com/evarol/DREDge) using either a combination of motion traces obtained using 544 

raw LFP and/or AP band data, fine-tuned for individual recordings. Motion-correction was then 545 

implemented using interpolation methods 546 

(https://github.com/williamunoz/InterpolationAfterDREDge). Both the AP and LFP band data 547 

are motion-corrected and utilized for further pre-processing and analysis steps. If the estimated 548 

motion led to no improvement in the spike locations then spike sorting proceeded with the 549 

motion correction package built into Kilosort 4 without performing interpolation.  550 

Unit extraction and classification 551 

Automated spike detection and clustering were performed by Kilosort 2.0 if motion correction 552 

was already applied using the DREDge algorithm or KiloSort 4.07 if motion correction was not 553 

applied separately. Manually curation of spike clustered was performed using the open-source 554 

software Phy.8 Unit quality metrics were calculated using SpikeInterface9 and were considered 555 

single units if they had a d-prime (d’) greater than 1 and fewer than 3% of spikes were violations 556 

of a 2ms inter-spike interval refractory period. 557 
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Local Field Potential data 558 

LFP data was bandpass-filtered between 0.1-20Hz and aligned to task events to extract local ERPs. 559 

Gamma band amplitude was calculated in the “high gamma” range, first bandpass filtering it 560 

between 70-150Hz and then calculating the absolute value of the Hilbert-transformed complex 561 

signal. Given the high correlation between adjacent channels, only 10 channels equally spanning 562 

the length of the probe were used to calculate statistics.  563 

  564 

Neuronal Data Analysis:  565 

All analyses were performed using custom MATLAB code.  566 

Motion Analysis 567 

The motion-corrected location estimates were obtained at a 250Hz sampling frequency using the 568 

DREDge algorithm. This signal was downsampled to 10Hz. The power spectrum of the calculated 569 

motion was then estimated using Welch's overlapped segment averaging estimator for frequencies 570 

between 0.1 and 3Hz. The amount of motion was defined as the root mean square error of the 571 

location trace of the probes center relative to its average location. 572 

Tone Responses 573 

Both single units and multi-units were used for all analyses. A tone responsive neuron was defined 574 

as having a statistically significant increase in the average firing rate in the first second after tone 575 

onset (shifted by 50ms to account for auditory delay) relative to the preceding 200ms baseline 576 

(∝<0.05, Wilcoxon signed-rank test). Visual demonstrations of the peri-stimulus average firing 577 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 9, 2025. ; https://doi.org/10.1101/2025.04.09.648012doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.09.648012


rate were smoothed via a causal Gaussian filter with a standard deviation of 150ms for 578 

visualization, however, all statistical analyses were performed on the raw spike count. Response 579 

onset latency was computed as the time taken to the peak response. A Mixed Gaussian Model with 580 

two components was then fit to the distribution of latencies. Given the trough between the two 581 

peaks at 291ms and evidence of average oddball response occurring in the first segment, a window 582 

of 0-300ms was used for analysis characterizing tone and oddball selectivity.  583 

Neural Tuning 584 

To determine response tuning properties, we modeled trial responses in the peristimulus period 585 

using general linear regression models. Neural data in the analysis time window of 0-300ms was 586 

used for tuning analyses. Unit response was defined as the average firing rate, LFP power was 587 

defined as the root mean square (RMS) value of the bandpass-filtered LFP, and gamma power was 588 

defined as the average gamma band amplitude. All vectors were z-scored to allow for comparison 589 

of the neural response modulation across units/channels. The independent variables were effects-590 

coded for tone type (frequency 1 vs. frequency 2), trial type (standard vs. oddball), and an 591 

interaction term (conjunctive coding). We set the α level at 0.05 to determine if the beta coefficient 592 

for the independent variables were statistically significant. 593 

Neuronal Population Coding 594 

To determine the information content present in the population, a Support Vector Machine with a 595 

linear kernel was trained using 10-fold cross validation for 200 iterations. Accuracy for each 596 

iteration was defined as the average accuracy across the 10 folds. Significant coding was defined 597 

as the distribution of 200 iterations being statistically different from 0.5 (chance). Algorithm 598 

validation was performed by shuffling the dataset and demonstrating that it always performed at 599 
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chance level. Subsampling was performed to avoid performance bias from an unbalanced dataset 600 

(i.e. more standard trials than oddball trials). To investigate the neuronal population response 601 

dynamics for tone and oddball encoding as a function of time, we used sets of sequential trials (50 602 

trials) from each of the two counterbalanced blocks (total of 100 trials). For example, the first set 603 

was using trials 1:50 and 181:230, whereas the last set was using trials 101:150 and 281:330. 604 

Decoding analyses were also run separately for early vs. late trials (first 75 vs. last 75 trials within 605 

a 150-trial block) for tone and oddball encoding respectively. 606 

Neuronal response learning dynamics 607 

Next, to determine the neural mechanism underlying statistical learning required for oddball 608 

detection, we evaluated single-trial response dynamics across the neuronal population. For each 609 

trial, we generated a neuronal response population vector. We then computed the Euclidean 610 

distance (||𝑢𝑢 − 𝑣𝑣||) and cosine angle (𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑖𝑖𝑖𝑖(𝑢𝑢 · 𝑣𝑣/||𝑢𝑢|| ∗ ||𝑣𝑣||)) between the mean vector across 611 

all standard trials and each individual oddball unit vector, evaluating each as a function of the 612 

oddball index.  613 

Continuous-rate RNN model. We implemented a continuous-rate recurrent neural network 614 

(RNN) and trained it to perform an oddball detection task, closely mirroring the one used for the 615 

experimental dataset. The network contains 200 recurrently connected units (80% of which are 616 

excitatory and 20% of which are inhibitory units). The network is governed by the following 617 

equation:  618 

𝜏𝜏𝑖𝑖
𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

 =  −𝑥𝑥𝑖𝑖(𝑑𝑑)  +  𝑊𝑊 ⋅ 𝑟𝑟(𝑑𝑑)  +  𝑢𝑢(𝑑𝑑) 619 

𝑟𝑟𝑖𝑖(𝑑𝑑)  =  
1

1 +𝑒𝑒−𝑥𝑥𝑖𝑖(𝑡𝑡) 620 
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𝑖𝑖(𝑑𝑑)  = 𝑊𝑊𝑜𝑜𝑜𝑜𝑡𝑡 ⋅ 𝑟𝑟(𝑑𝑑)  621 

where i represents the synaptic decay time constant for unit i, xi(t) indicates the synaptic current 622 

variable for neuron i at time point t, W is the recurrent connectivity matrix (N-by-N; i.e. 200-by-623 

200), and u(t) is the input data given to the network at time point t. u is a 2-by-200 matrix where 624 

the first dimension refers to the number of input channels and the second dimension is the total 625 

number of time points. A firing rate of a unit was estimated by passing the synaptic current variable 626 

(x) through a standard logistic sigmoid function. The output (o) of the network was computed as a 627 

linear weighted sum of the entire population of units. 628 

In each trial, the network model receives input data mimicking auditory signals. The input consists 629 

of two signal streams, each representing a distinct auditory tone (i.e. tone A vs. tone B; [Figure 630 

3F,G]). Only one tone is presented to the network per trial. The model was trained to produce an 631 

output signal approaching +1 when Tone A was presented and an output signal approaching -1 632 

when Tone B was presented. To closely replicate the experimental task design, we employed three 633 

different sequential contexts during network training. In the first stage, Tone A was presented 634 

predominantly (80% of trials), followed by an equal distribution of Tone A and Tone B (50/50) in 635 

the second stage. In the third stage, Tone B was predominant (80%).  636 

We optimized the network parameters, including recurrent connectivity, readout weights, and 637 

synaptic decay time constants, using gradient descent via backpropagation through time (BPTT). 638 

The network was required to achieve over 95% task accuracy in the current context before a new 639 

context was introduced. 640 

Neuronal Data Analysis: Natural Language stimuli 641 
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Natural language stimuli 642 

All patients were native English speakers. The podcast played during the task was automatically 643 

transcribed using Assembly AI (https://www.assemblyai.com/). The transcribed words and 644 

corresponding timestamp outputs from Assembly AI were converted to a TextGrid and then loaded 645 

into Praat.10 The original wav file was also loaded into Praat and the spectrograms and labels and 646 

timestamps were manually checked and corrected to ensure the word onset and offset times were 647 

accurate. This process was then repeated by a second reviewer to ensure the validity of the time 648 

stamps. The TextGrid output of corrected words and timestamps from Praat was converted to a xls 649 

and loaded into Matlab and Python for further analysis.  650 

Natural Language statistics 651 

Word frequency was defined based on a corpus of movie subtitles spanning a total of 51 million 652 

words.11 Words that did not elicit a response during the duration of the word were excluded from 653 

this analysis. To compare the relative contributions to firing rate, a linear model was trained to 654 

estimate the logarithmic firing rate from the logarithmic duration and corpus frequency of each 655 

word. Word surprisal values were calculated using the GPT-2 large model12 from the Hugging 656 

Face Transformers library,13 computing the negative log probability of each word conditioned on 657 

the preceding context. Specifically, surprisal was defined by the equation:𝑖𝑖𝑢𝑢𝑟𝑟𝑠𝑠𝑟𝑟𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠 =658 

 −𝑠𝑠𝑖𝑖𝑙𝑙 𝑃𝑃(𝑤𝑤𝑖𝑖|𝑤𝑤𝑖𝑖−1,𝑤𝑤𝑖𝑖−2, . . . ,𝑤𝑤2,𝑤𝑤1) where 𝑃𝑃(𝑤𝑤𝑖𝑖) refers to the probability of word i given the 659 

proceding words.  660 

We utilized the pre-trained fastText Word2Vec model in MATLAB to extract word embeddings 661 

for all words in our dataset.14,15 This pre-trained model provides 300-dimensional word 662 

embedding vectors, trained on 16 billion tokens from Wikipedia, UMBC webbase corpus, and 663 
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statmt.org, to capture semantic relationships between words. Notably, Word2Vec is a non 664 

contextual embedder, so all instances of the same word are represented the same. Some surname 665 

words, such as “Harwood” or proper nouns like “Applebee’s” did not have word embeddings 666 

and were discarded from the analysis. A simple linear model was trained to predict the firing rate 667 

of individual neurons from the semantic matrices using 10-fold cross-validation. Accuracy was 668 

defined as the correlation between true and predicted firing rates. Words with 0Hz or above 669 

25Hz were removed from this analysis. To prevent overfitting, Principal Component Analysis 670 

(PCA) was used to reduce the dimensionality to account for 30% of the variance prior to 671 

modeling. This threshold was defined as the minimum of the RMSE of the model that balanced 672 

under and overfitting. To predict future or previous words the alignment between words was 673 

shifted forwards or backwards, respectively. This relation was then fit with a piecewise 674 

exponential decay 675 

 676 

𝑟𝑟(𝑖𝑖) = 𝛽𝛽0 ∗ �
 𝑒𝑒1/𝛽𝛽1𝑓𝑓𝑖𝑖𝑟𝑟 𝑖𝑖 >= 0
𝑒𝑒−𝑖𝑖/𝛽𝛽2𝑓𝑓𝑖𝑖𝑟𝑟 𝑖𝑖 < 0

� 677 

Wherein 𝛽𝛽0 is the amplitude of the correlation at 0 lag, and 𝛽𝛽1 and 𝛽𝛽2 are equivalent to the time 678 

constant of the decay for positive and negative lags, respectively.  679 

Word embedding, Semantic clustering, and Part of Speech classification 680 

To identify the natural semantic categories present in our word data, all unique words heard by the 681 

participants were clustered into groups using a word embedding approach.14–16 We used the same 682 

300-dimensional embedding from the prior GLM analysis. To compute and visualize semantic 683 

clusters, we first used a t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm on word 684 
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embedding values to reduce the dimensionality of each unique word based on their cosine distance 685 

to all other words, thus reflecting their semantic similarity. Words with similar meanings now have 686 

similar 2D coordinates. We then applied the k-means clustering algorithm to these 2D word 687 

representations and visualized clustered words on a 2D word map (12 clusters).17 We then 688 

manually inspected and assigned a distinct label to each semantic cluster and adjusted clusters for 689 

accuracy. For example, words bordering the edges of clusters would sometimes get mis-grouped 690 

and were manually corrected. The final 12 semantic categories of the words are body parts, places, 691 

emotional words, mental words, social words, objects, visual words, numerical words, actions, 692 

identity words, function words, and proper nouns. Correction for multiple comparisons was 693 

performed using the Benjamini Hochberg approach.18 A SVM was trained for each semantic 694 

category (versus all other categories) using a radial basis function (‘RBF’) kernel. Model training 695 

and accuracy metrics were weighted to the relative frequency of each group. We used 10-fold cross 696 

validation and 200 iterations.  697 

To extract part-of-speech (POS) for each word in the dataset, we utilized an automated pipeline 698 

through Stanford CoreNLP, a natural language processing toolkit.19 We initialized a 699 

CoreNLPParser with the 'pos' tagtype, which specializes in part-of-speech tagging. The transcript 700 

was first segmented into sentences based on punctuation. Each sentence was then tokenized and 701 

passed through the CoreNLPParser's tagging function. This process leveraged CoreNLP's 702 

advanced linguistic models to analyze the context and structure of each sentence, assigning 703 

appropriate POS tags to individual words. The 15 POS types were: 'Noun', 'Adjective', 'Numeral', 704 

'Determiner', 'Conjunction', 'Preposition or Subordinating Conjunction', 'Auxiliary', 'Possessive 705 

Pronoun', 'Pronoun', 'Adverb', 'Particle', 'Interjection', 'Verb', 'Wh-Word', and 'Existential'. POS 706 

types with fewer than 45 words were removed from analysis. A similar SVM was used for POS. 707 
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