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Abstract 
Everyday perceptual tasks require sensory stimuli to be dynamically encoded and analyzed 
according to changing behavioral goals. For example, when searching for an apple at the 
supermarket, one might first find the Granny Smith apples by separating all visible apples into 
the categories “green” and “non-green”. However, suddenly remembering that your family 
actually likes Fuji apples would necessitate reconfiguring the boundary to separate “red” from 
“red-yellow” objects. This flexible processing enables identical sensory stimuli to elicit varied 
behaviors based on the current task context. While this phenomenon is ubiquitous in nature, 
little is known about the neural mechanisms that underlie such flexible computation. 
Traditionally, sensory regions have been viewed as mainly devoted to processing inputs, with 
limited involvement in adapting to varying task contexts. However, from the standpoint of 
efficient computation, it is plausible that sensory regions integrate inputs with current task goals, 
facilitating more effective information relay to higher-level cortical areas. Here we test this 
possibility by asking human participants to visually categorize novel shape stimuli based on 
different linear and non-linear boundaries. Using fMRI and multivariate analyses of 
retinotopically-defined visual areas, we found that shape representations in visual cortex 
became more distinct across relevant decision boundaries in a context-dependent manner, with 
the largest changes in discriminability observed for stimuli near the decision boundary. 
Importantly, these context-driven modulations were associated with improved categorization 
performance. Together, these findings demonstrate that codes in visual cortex are adaptively 
modulated to optimize object separability based on currently relevant decision boundaries.  
 
Keywords: context-dependent processing, decision making, human visual cortex, decision 
boundaries, task modulations, neural mechanisms 
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Introduction 
Perceptual categorization is a fundamental cognitive ability that allows us to organize 

and understand the myriad stimuli encountered in our sensory environment. By forming 
categories, observers are able to generalize existing knowledge to new incoming inputs, 
facilitating efficient perception and decision-making (Bruner, 1957; Freedman & Assad, 2016). 
Within the visual system, categories can capture divisions within the natural structure of a 
stimulus space (Rosch et al., 1976) or can reflect the learning of arbitrary discrete boundaries 
along stimulus dimensions that would otherwise be represented continuously (Ashby & Maddox, 
2005). At the same time, categorization in the real world is a highly dynamic cognitive process, 
in which the category membership of stimuli may change over time. For example, when making 
a categorical decision about produce at the farmer’s market, depending on our goals we might 
think of carrots in the same category as lettuce (vegetables) or the same category as tangerines 
(orange colored items). Perceptual categorization is thus also tightly connected with flexible 
prioritization of information based on current task demands (Biederman et al., 1973; McAdams 
& Maunsell, 1999). Within contexts where task goals change dynamically over time, the neural 
mechanisms supporting categorization of sensory stimuli are not yet understood. 

Past work has provided some insight into how category learning impacts representations 
of sensory stimuli. Behaviorally, learning to categorize stimuli in a continuous feature space can 
lead to perceptual changes such as an increase in sensitivity to changes along a relevant 
stimulus dimension, and an increase in perceptual discriminability of stimuli belonging to 
different categories (Goldstone, 1994; Livingston et al., 1998; Newell & Bülthoff, 2002). Such 
changes are also reflected in the brain – electrophysiology studies in macaques have 
demonstrated that after learning of a categorization task, neurons in inferotemporal cortex (ITC) 
become more strongly selective for diagnostic dimensions of stimuli (Sigala & Logothetis, 2002), 
and neural populations in ITC also contain information encoding the learned category status of 
stimuli (Meyers et al., 2008; Tanaka, 1996). In human functional magnetic resonance imaging 
(fMRI) studies, learning to discriminate object categories has been shown to increase neural 
responses to objects in extrastriate cortex (Gauthier et al., 2000; Op de Beeck et al., 2006) and 
lead to sharpening of visual representations as measured with fMRI adaptation (Folstein et al., 
2015; Folstein et al., 2013; Jiang et al., 2007). Moreover, recent work has shown that learning a 
decision boundary can alter representations of orientation in early visual areas, with 
representations becoming biased away from the decision boundary (Ester et al., 2020). At the 
same time, other work has suggested that the effects of category status on sensory 
representations are more prominent in prefrontal cortex (PFC) than visual areas. This suggests 
that the primary role of visual areas may be restricted to perceptual analysis, rather than 
decision-related processing  (Freedman et al., 2003; McKee et al., 2014; Meyers et al., 2008). 

From an efficient processing perspective, it is plausible that visual areas play a more 
active role in decision-making, potentially encoding decision-related variables, task contexts, 
choices, or motor outcomes. Such coding would enable visual areas to process sensory inputs 
in a manner conducive to downstream processing. Emerging evidence from rodent studies 
supports this view. For instance, activity that was thought to reflect random fluctuations in neural 
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representations within sensory areas has been linked to choice-related motor activities and 
decision outcomes (Musall et al., 2019; Stringer et al., 2019). Furthermore, recent findings 
indicate that early sensory areas robustly encode task context variables, such as expectations 
and decision rules, during dynamic decision-making tasks (Ebrahimi et al., 2022; Findling et al., 
2023). Yet, the extent to which human sensory areas similarly code for task-related variables 
and adapt their representations contextually is unclear.  

In addition, the mechanisms by which categorical decision-making flexibly shapes neural 
representations, particularly in tasks necessitating the switching between distinct decision rules, 
are not well understood. Prior work has demonstrated that neural populations in PFC can 
dynamically encode different boundaries depending on the currently relevant task rule (Cromer 
et al., 2010; Roy et al., 2010), providing one potential neural mechanism for dynamic decision-
making. Similarly, a human neuroimaging study using novel objects suggested that 
representations in frontoparietal areas can encode different category distinctions between 
objects depending on their task relevance (Jackson et al., 2017). This study also found 
evidence for similar (albeit weaker) effects in the lateral occipital complex (LOC), suggesting 
that representations in visual areas may also be modified by task-relevance. Thus, it remains an 
open question whether and how varying task contexts interact with representations in visual 
cortex, as well as how these modulations may contribute to downstream task performance. 

Here we address these gaps by investigating how neural responses in human visual 
cortex flexibly adapt to dynamic task contexts, as induced by varying categorization rules. We 
hypothesized that task context modulates sensory representations such that changes in the 
decision boundary are actively integrated during the early analysis of sensory information. To 
examine the effects of categorization within an abstract stimulus space, we generated a two-
dimensional space of shape stimuli (Op de Beeck et al., 2001; Zahn & Roskies, 1972) that were 
viewed by human participants undergoing fMRI scanning. Participants categorized shapes 
according to different rules: linear boundaries (Linear-1 and Linear-2 tasks) or a non-linear 
boundary (Nonlinear task). These task contexts were interleaved across scanning runs, 
necessitating real-time cognitive adaptation to distinct categorization requirements applied to 
physically identical stimuli. Each task incorporated both "easy" and "hard" trials drawn from 
distinct locations in the shape space, enabling us to concurrently examine the influence of 
perceptual difficulty on decision processes. Using multivariate decoding methods in 
retinotopically-defined visual areas, we measured shape representations in each categorization 
task and examined how representations differed across task contexts. We predicted that shape 
representations would be more discriminable across a given decision boundary when that 
boundary was relevant for the current task. Findings from our neural data are in line with this 
account. Importantly, we further show that an increase in neural discriminability is directly linked 
to improved task performance.  
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Results 
 

We trained 7 human participants to perform a shape categorization task while in the 
fMRI scanner, with each subject participating in 3 scanning sessions that each lasted 2 hours 
(Figure 1A). Shape stimuli varied parametrically along two independent axes, generating a two-
dimensional shape space, and each condition of the task required shapes to be categorized 
according to either a linear boundary (Linear-1 and Linear-2 tasks) or a nonlinear boundary that 
required grouping together of non-adjacent quadrants (Nonlinear task). These different 
categorization tasks were performed during different scanning runs within each session, 
meaning that participants needed to flexibly apply different decision rules depending on the task 
condition for the current run (see Methods). Each task included a mixture of “easy” trials and 
“hard” trials. On the “easy” trials, a common set of 16 shapes, making up a 4x4 grid which we 
refer to as the main grid (black dots in Figure 1B), were shown in all tasks, while on “hard” trials, 
shapes were sampled from portions of the shape space near the active boundary, which made 
the current task more challenging (light gray dots in Figure 1B). 
 

To verify the two-dimensional structure of our shape space, we used an image similarity 
analysis based on GIST features (Oliva & Torralba, 2001; see Methods) to assess the 
perceptual similarity between shape stimuli. As expected, a principal components analysis 
(PCA) performed on the GIST features revealed a two-dimensional grid structure, with the two 
shape space axes oriented roughly orthogonal to one another in PC space (Figure 1C). In 
addition, measuring the linear separability (based on between-category versus within-category 
Euclidean distances; see Methods) of shapes across each category boundary based on GIST 
features revealed that shapes were most separable across the Linear-2 boundary, followed by 
the Linear-1 boundary, with lowest separability for the Nonlinear boundary (Figure 1D). A similar 
pattern was found when computing separability using features from a self-supervised deep 
neural network model (SimCLR; T. Chen et al., 2020; see Methods), suggesting that these 
relationships held even when considering a broader set of image features (Figure 1D; darker 
purple bars). The low separability of the Nonlinear categories relative to the Linear-1 and Linear-
2 categories is consistent with the Nonlinear boundary being nonlinear in shape space. 
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Figure 1. Stimulus set, task design, and behavioral performance. (A) Two-dimensional shape 
space used for categorization tasks in this experiment. Shapes are generated using radial 
frequency contours (Op de Beeck et al., 2001; Zahn & Roskies, 1972) that vary along two 
independent dimensions, referred to as axis 1 and axis 2. See Methods for more details. (B) 
Illustration of the tasks (Linear-1, Linear-2, Nonlinear) performed by participants while in the 
fMRI scanner. Points in each plot indicate the positions in shape space that were sampled, and 
dotted lines indicate the relevant categorization boundaries for each task. Black dots represent 
the 16 positions in the “main grid”, which were sampled on “easy” trials in every task, while light 
gray dots represent positions that were sampled on “hard” trials, which differed depending on 
the task. Hard trial shape positions were sampled from the region nearest the relevant 
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categorization boundary. Different tasks were performed during different scan runs. In each 
task, every trial consisted of the presentation of a single shape (1s), and participants were 
instructed to respond with a button press indicating which category the presented shape fell 
into. See Methods for more details on task design. (C-D) Image similarity analysis: we 
computed activations from two computer vision models, GIST (Oliva & Torralba, 2001) and 
SimCLR (T. Chen et al., 2020) for each of the 16 main grid shape images. (C) Visualization of a 
principal components analysis (PCA) performed on the GIST model features, where each 
plotted point represents one shape in PC space, colored according to the coordinate value 
along axis 1 (left) or axis 2 (right). (D) Quantification of the separability of shape categories 
within each feature space, computed based on the ratio of between-category to within-category 
Euclidean distance values. See Methods for more details. (E) Behavioral accuracy (left) and 
response time (RT; right) in each task. Dots in shades of green represent individual participants; 
open circles and error bars represent the mean ± SEM across 7 participants. (F) Accuracy (left) 
and RT (right) for each task separated into “easy” and “hard” trials, where easy refers to trials 
sampling the 16 shapes in the main grid (black dots in B), and hard refers to trials sampling 
more challenging portions of the shape space for each task (light gray dots in B). Gray lines 
represent individual participants, open circles and error bars represent the mean ± SEM across 
7 participants. 
 
 
 
 

Across participants, behavioral accuracy (Figure 1E) was highest for the Linear-2 task 
(0.86 ± 0.02; mean ± SEM across 7 participants), followed by the Linear-1 task (0.82 ± 0.01) 
and the Nonlinear task (0.81 ± 0.01). A repeated measures ANOVA revealed a main effect of 
task (F(2,12) = 9.67, p < 0.001; p-values obtained using permutation test; see Methods), and post-
hoc tests showed that accuracy was significantly higher for the Linear-2 task than all other tasks 
(Linear-1 vs. Linear-2: t(6) = -2.65, p = 0.016; Linear-2 vs. Nonlinear: t(6) = 3.94, p = 0.018; paired 
t-tests with permutation; see Methods). This advantage for the Linear-2 task is consistent with 
the high relative separability across the Linear-2 boundary based on image features shown in 
the previous analysis (Figure 1D). In terms of response times (RTs), a significant main effect of 
task was also found (F(2,12) = 5.28, p = 0.013). No difference in RTs between the Linear-1 and 
Linear-2 tasks was observed, but RTs were significantly slower for the Nonlinear task than the 
Linear-1 task (t(6) = -3.15, p = 0.050). In addition to these differences across tasks, we also 
observed a consistent difference between performance on the easy and hard trials within each 
task (Figure 1F), which was expected based on the task design. Accuracy was significantly 
higher on easy versus hard trials within each task (Linear 1: t(6) = 11.88, p = 0.018; Linear-2: t(6) 

= 5.87, p = 0.017; Nonlinear: t(6) = 11.10, p = 0.016), and RT was significantly faster on easy 
versus hard trials within each task (Linear 1: t(6) = -6.15, p = 0.019; Linear-2: t(6) = -8.08, p = 
0.015; Nonlinear: t(6) = -4.35, p = 0.017).  
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Figure 2. Overall classification accuracy. A multinomial (16-way) logistic regression classifier 
was trained to classify the shape shown on each trial within each task condition (Linear-1, 
Linear-2, and Nonlinear tasks). Classifiers were trained and tested within each task condition 
separately, training using data from the main grid trials only (i.e. black dots in Figure 1B). 
Plotted values reflect overall 16-way prediction accuracy of classifiers for each task and each 
ROI, computed using trials from the main grid only. Gray dots represent individual participants, 
colored circles and error bars represent the mean ± SEM across 7 participants, horizontal line 
indicates chance decoding accuracy of 1/16. All classification accuracy values were above 
chance at the participant-averaged level (FDR corrected, q < 0.01); see Methods for more 
details.  
 
 
 

Next, we examined the neural representations of shape stimuli in each task, under the 
hypothesis that shape representations would differ across task conditions in accordance with 
the changing decision boundary. To achieve this we used multivariate classification to analyze 
single-trial voxel activation patterns from retinotopically defined ROIs (Figure 2). We trained a 
16-way multinomial classifier using L2 regularization and data from each task separately, and 
found that overall classification accuracy was highest in V2 (16-way accuracy averaged across 
tasks: 0.28 ± 0.03; mean ± SEM across 7 participants), followed by V1 (0.25 ± 0.03) and V3 
(0.22 ± 0.02). Participant-averaged classification accuracy was significantly above chance for 
every ROI in every task (significance evaluated using a permutation test; FDR corrected; all q < 
0.01; see Methods).  
 

To characterize the neural shape space, we used the output of the 16-way classifier to 
compute a confusion matrix for each ROI and for each task, which captures how often the 
classifier assigned each shape label to each shape in the test dataset (Figure 3; see Methods). 
For V1, this confusion matrix revealed that shape confusability was related to distance in shape 
space, with the classifier tending to make more errors between shapes that were adjacent in 
shape space (off-diagonal structure in Figure 3A). This relationship with distance can also be 
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seen by plotting the proportion of predictions as a function of the distance between predicted 
and actual shape space coordinates (Figure 3B). Importantly, the distances between shape 
space points were not specified in the construction of the classifier, where all 16 points were 
treated as independent categories. Thus, the emergence of this structure in the classifier 
confusion matrix provides evidence for a two-dimensional representation of the shape space 
grid in V1. A similar pattern was seen in all other ROIs tested. 
 

Next, we examined how well the neural shape space measured in each task aligned with 
each decision rule. To examine this, we first constructed “template” confusion matrices for the 
Linear-1 and Linear-2 boundaries, where each template had 1 for shape pairs that were on the 
same side of the category boundary for that task and 0 for shape pairs that were on different 
sides (Figure 3C). We then correlated these template matrices with the real confusion matrices 
for each task (Figure 3D). This analysis revealed that the similarity of confusion matrices to 
each template differed depending on task. A three-way repeated measures ANOVA on the 
template similarity values showed main effects of ROI and Template, as well as a significant 
ROI x Template interaction and a significant Task x Template interaction (ROI: F(7,42) = 49.14, p 
< 0.001; Task: F(1,6) = 5.53, p = 0.059; Template: F(1,6) = 22.9, p = 0.003; ROI x Task: F(7,42) = 
1.48, p = 0.204; ROI x Template: F(7,42) = 3.83, p = 0.004; Task x Template: F(1,6) = 6.77, p = 
0.039; ROI x Task x Template: F(7,42) = 0.89, p = 0.515; p-values obtained using permutation 
test; see Methods). Evaluating the similarity values for each template separately, we found that 
across all ROIs, the Linear-2 template was significantly more similar to confusion matrices 
computed from the Linear-2 task versus the Linear-1 task (two-way repeated measures 
ANOVA; ROI: F(7,42) = 31.92, p < 0.001; Task: F(1,6) = 9.62, p = 0.018; ROI x Task: F(7,42) = 1.17, p 
= 0.352). Post-hoc tests showed that the difference in similarity to the Linear-2 template 
between the Linear-2 and Linear-1 tasks was significant in LO1 (t(6) = -3.41, p = 0.014; paired t-
test with permutation; see Methods). These findings suggest that shape representations in LO1 
were more aligned with the Linear-2 template when the Linear-2 boundary was relevant than 
when it was irrelevant for the present task. However, the similarity of confusion matrices to the 
Linear-1 template did not differ significantly across tasks (two-way repeated measures ANOVA; 
ROI: F(7,42) = 34.17, p < 0.001; Task: F(1,6) = 0.19, p = 0.676; ROI x Task: F(7,42) = 1.24, p = 
0.303). Additionally, when we constructed a template for the Nonlinear task, we did not observe 
a difference in the similarity of confusion matrices to the Nonlinear template across tasks 
(Supplementary Figure 1). Together, these results suggest that shape representations in visual 
cortex during our task may reorganize in a way that reflects the current decision boundary and 
shifting cognitive demands. 
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Figure 3. Classifier confusion matrices suggest restructuring of shape representations between 
the Linear-1 and Linear-2 tasks. (A) Classifier confusion matrices for V1 in each task, where 
each row represents the set of trials on which a given shape was actually shown, and the 
columns represent the proportion of those trials that the classifier predicted as having each of 
the 16 shape labels (each row sums to 1). Confusion matrices were computed using main grid 
trials only, and are averaged across 7 participants. (B) A simplified view of the classifier 
confusion data for V1: we computed the proportion of trials on which the actual and predicted 
shapes were separated by a given distance in shape space. Colored lines and shaded error 
bars indicate mean ± SEM across 7 participants. (C) Template matrices for the Linear-1 and 
Linear-2 tasks, representing the pattern of confusability expected for a perfect binary 
representation of each categorization boundary. (D) The similarity (Pearson correlation 
coefficient) between actual and template confusion matrices for each task and each ROI. Gray 
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dots represent individual participants, colored circles and error bars represent the mean ± SEM 
across 7 participants. See Supplementary Figure 1 for an analogous analysis using a template 
for the Nonlinear task.  
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Figure 4. Illustration of how classifier “confidence” was computed with respect to each binary 
decision boundary. (A) Linear-1 confidence, or confidence with respect to the Linear-1 category 
boundary, was computed based on the difference between the total probability assigned by the 
16-way classifier to each side of the boundary (see Methods). Left and right panels represent 
data from V1 in the Linear-1 and Linear-2 tasks, respectively, averaged across all participants. 
In each of the plots, each square represents a bin of shape space positions in the test dataset, 
and the color indicates the average confidence assigned to the correct category for that test trial 
(red) versus the incorrect category (blue). Arrows labeled “far”, “middle”, and “near” indicate the 
bins of distance from the category boundary in which confidence values were averaged (see 
Figure 5). (B) Same as A, but showing Linear-2 confidence. An analogous procedure was also 
used to compute Nonlinear confidence; see Methods. 
 
 

Next, we examined whether these representational changes differed depending on the 
position of shapes in the overall shape space. Specifically, we asked if changes in 
representations were more pronounced for shapes nearer to the category boundary than 
shapes further from the boundary. We divided the trials in each categorization task (Linear-1, 
Linear-2, and Nonlinear tasks) into three bins as a function of distance from each boundary: far, 
middle, and near (see Figure 4 and Methods for details). To measure the category separability 
of shapes in each of these distance bins, we computed classifier confidence with respect to 
each of the category boundaries: we refer to these measures as Linear-1 confidence, Linear-2 
confidence, and Nonlinear confidence. Each type of confidence was computed by taking the 
output of the 16-way classifier described above and comparing the total probability assigned by 
the classifier to points on each side of each boundary. This analysis provides a continuous 
metric where larger positive values indicate higher separability of shapes across the boundary 
of interest. 
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Figure 5. Discriminability of Linear-1 and Linear-2 shape categories depends on task and 
proximity to category boundaries. To obtain a continuous estimate of shape category 
discriminability, we used our 16-way multinomial classifier (see Figure 2) to compute classifier 
confidence toward the correct binary category on each trial (see Figure 4). Confidence was 
computed with respect to the Linear-1 categorization boundary (Linear-1 confidence; left) or the 
Linear-2 categorization boundary (Linear-2 confidence; right). (A) Confidence computed using 
“far” trials, meaning the 8 points in the main grid that fell furthest from the category boundary of 
interest. (B) Confidence computed using “middle” trials, meaning the 8 points in the main grid 
that fell nearest to the boundary of interest. (C) Confidence computed using “near” trials, 
meaning those that were not part of the main grid and fell nearest to the boundary of interest. 
The exact set of shape space positions sampled on near trials differed between tasks, but was 
matched using resampling for this analysis; see Methods for details. In (A-C), the gray dots 
represent individual participants, colored circles and error bars represent the mean ± SEM 
across 7 participants. 
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We first compared Linear-1 confidence and Linear-2 confidence across the Linear-1 and 
Linear-2 tasks. Overall, both types of confidence were highest for trials furthest from the 
boundary (Figure 5A), followed by middle trials (Figure 5B) and near trials (Figure 5C). This 
pattern is expected given that shapes further from the boundary are more distinctive from one 
another, while shapes nearer to the boundary are more ambiguous. In addition, this analysis 
revealed effects of task condition that differed for far, middle, and near trials. For trials in the far 
group, a three-way repeated measures ANOVA showed main effects of ROI and confidence 
boundary (i.e., Linear-1 confidence versus Linear-2 confidence), but no main effect of task or 
interaction between task and boundary (Supplementary Table 1), suggesting that 
discriminability of shapes across the Linear-1 and Linear-2 boundaries did not differ across 
tasks for this group of trials. For both the middle trials and the near trials, however, there was 
also a significant interaction between task and boundary (Supplementary Table 1). When each 
boundary was examined separately for each of these trial groups, we found a main effect of task 
on Linear-2 confidence for both the middle trials and the near trials (two-way repeated 
measures ANOVA on middle trials; ROI: F(7,42) = 24.93, p < 0.001; Task: F(1,6) = 10.22, p = 0.015; 
ROI x Task: F(7,42) = 0.17, p = 0.990; near trials; ROI: F(7,42) = 4.72, p < 0.001; Task: F(1,6) = 10.25, 
p = 0.014; ROI x Task: F(7,42) = 1.22, p = 0.315), with Linear-2 confidence showing higher values 
for the Linear-2 task than the Linear-1 task. Additional post-hoc tests in each ROI showed that 
for near trials, Linear-2 confidence was significantly higher for the Linear-2 task than the Linear-
1 task in V1 (t(6) = -3.72, p = 0.030; paired t-test with permutation; see Methods). As with the 
confusion matrix analysis, the effect of task was larger for the Linear-2 boundary than for the 
Linear-1 boundary – there was no main effect of task seen for the Linear-1 confidence values 
for either middle or near trials (middle trials; ROI: F(7,42) = 18.12, p < 0.001, Task: F(1,6) = 0.10, p 
= 0.755; ROI x Task: F(7,42) = 0.46, p = 0.868; near trials; ROI: F(7,42) = 3.08, p = 0.006; Task: 
F(1,6) = 0.01, p = 0.923; ROI x Task: F(7,42) = 1.11, p = 0.379).  
 

In addition to comparing confidence across the two linear boundaries, we measured 
Nonlinear confidence for the far, middle, and near trials in each task (Figure 6). As before, 
confidence values tracked the distance of shapes from the boundary, with highest overall 
confidence observed for far trials, followed by middle and near trials. In contrast to the results 
with Linear-2 confidence, however, Nonlinear confidence did not show any significant 
differences across tasks (Supplementary Table 2). 
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Figure 6. Discriminability of shapes across the Nonlinear boundary does not differ significantly 
across tasks. As in Figure 5, we computed the confidence of the classifier toward the correct 
Nonlinear task category for each trial. (A) Confidence computed using “far” trials, meaning the 
four points in the main grid that fell furthest from the two category boundaries (i.e., four corners 
of the shape space grid). (B) Confidence computed using “middle” trials, meaning the 12 points 
in the main grid that fell nearest to either of the two category boundaries. (C) Confidence 
computed using “near” trials, meaning those that were not part of the main grid and fell nearest 
to the two boundaries. The exact set of shape space positions sampled on near trials differed 
between tasks, but was matched using resampling for this analysis; see Methods for details. In 
(A-C), the gray dots represent individual participants, colored circles and error bars represent 
the mean ± SEM across 7 participants. 

 
 

Finally, we evaluated whether the discriminability of shape representations across the 
relevant category boundary in each task was associated with behavioral performance. To test 
this, we compared classifier confidence for correct versus incorrect trials (focusing on “near” 
trials only, since these had the highest rate of incorrect responses). To ensure a fair comparison 
across correct and incorrect trials, we used bootstrap resampling to match the distribution of 
stimulus positions sampled in each group of trials; see Methods for details. As shown in Figure 
7, this analysis revealed a significant difference in classifier confidence between correct and 
incorrect trials in both the Linear-2 and the Nonlinear tasks, with confidence tending to be higher 
for correct trials than incorrect trials, particularly in early areas V1, V2, and V3. A two-way 
repeated measures ANOVA with factors of ROI and correctness revealed a significant main 
effect of correctness for both the Linear-2 and Nonlinear tasks, and a significant interaction 
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between ROI x correctness for the Nonlinear task (Linear-2; ROI: F(7,42) = 5.57, p < 0.001; 
Correctness: F(1,6) = 8.04, p = 0.0297; ROI x Correctness F(7,42) = 1.96, p = 0.083; Nonlinear; 
ROI: F(7,42) = 3.58, p = 0.004; Correctness: F(1,6) = 8.05, p = 0.030; ROI x Correctness F(7,42) = 
3.41, p = 0.006; p-values obtained using permutation test; see Methods). At the individual ROI 
level, confidence was significantly higher for correct than incorrect trials in V1 during the 
Nonlinear task (t(6) = 5.172, p = 0.018; paired t-test with permutation; see Methods). The Linear-
1 task showed no significant differences in confidence for correct versus incorrect trials (ROI: 
F(7,42) = 4.45, p < 0.001; Correctness: F(1,6) = 0.20, p = 0.664; ROI x Correctness F(7,42) = 1.10, p = 
0.382). These results indicate that the separability of shape representations in early visual 
cortex across the task-relevant category boundary was associated with behavioral performance, 
at least for two out of three categorization tasks.   
 
 

 
 
Figure 7: Task-relevant shape categories are more discriminable on correct versus incorrect 
trials. In each task, classifier confidence was computed with respect to the relevant category 
boundary for that task. Confidence was computed using “near” trials only (those nearest the 
relevant boundary), separately for trials with correct and incorrect behavioral responses. The set 
of shape space positions sampled on correct and incorrect trials was matched using resampling 
to ensure that the effect was not driven by stimulus differences; see Methods for details. Gray 
dots represent individual participants, colored circles and error bars represent the mean ± SEM 
across 7 participants. 
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Discussion 
Our goal was to determine whether and how human visual cortex representations of 

shape stimuli are adaptively modulated when switching between distinct task contexts. To test 
this, we trained participants to perform a categorization task on shape silhouette stimuli within a 
two-dimensional shape space (Figure 1). Participants categorized shapes according to different 
categorization rules (Linear-1, Linear-2, Nonlinear) on interleaved fMRI scanning runs, and we 
used multivariate decoding to explore how neural representations shift based on decision rules 
and the relative positions of shapes within the two-dimensional stimulus space. First, we used a 
confusion matrix analysis to show that shape representations became more aligned with the 
Linear-2 boundary when participants were performing the Linear-2 task versus the Linear-1 
task, with the largest effect observed in LO1 (Figure 3). We then showed that the discriminability 
of shapes across each linear boundary, as measured by classifier confidence, was higher when 
that boundary was relevant to the current task. These effects were most pronounced in early 
areas V1-V3, and were strongest for shapes located nearest to the active categorization 
boundary (Figure 5). Finally, we showed that the discriminability of shapes across relevant 
category boundaries was higher on correct versus incorrect trials, indicating a link with 
behavioral task performance (Figure 7). Together, these results demonstrate that performance 
of a categorization task with a dynamically changing task boundary is accompanied by changes 
to neural representations in human visual cortex.  

The average accuracy of our decoder, across tasks, was highest in V2 followed by V1 
and V3. This high decoding accuracy in early areas is surprising in light of earlier work 
suggesting that higher visual areas like ITC and LOC encode shapes similar to ours (i.e., radial 
frequency components (RFC)-defined silhouettes) in a way that matches perceptual similarity 
(Drucker & Aguirre, 2009; Op de Beeck et al., 2001), and that LOC is critically involved in shape 
computations (Vinberg & Grill-Spector, 2008). Work in non-human primates also indicates that 
neurons in ITC, as well as in V4, are more strongly tuned for shape and contour than neurons in 
V1 (Connor et al., 2007; DiCarlo & Maunsell, 2000; Pasupathy & Connor, 1999; Tanaka, 1993, 
1996). One reason for our observation of higher decoding accuracy in early areas is that our 
stimuli were silhouettes presented at a fixed size and position, so invariance to size or position 
was not required to encode them accurately. As a result, fine-grained retinotopic and orientation 
tuning in areas like V1-V3 was likely sufficient to encode the shapes with high accuracy, without 
the need for an explicit – or invariant – contour or shape representation. Importantly, the goal of 
our experiment was not to measure abstract representations of shape or contour per se but to 
measure how visual representations change in accordance with dynamically varying decision 
boundaries, and our relatively simple stimulus set was appropriate for this goal. 

The effects of task context on classifier confidence (Figure 5), as well as association of 
classifier confidence with behavioral performance (Figure 7), also tended to be strongest in 
early visual areas. This advantage for early areas may be due in part to the higher signal-to-
noise ratio (SNR) of decoding accuracy in V1-V3, but it may also suggest that representations in 
these areas are particularly important for performance of our decision task. The findings of 
strong task-dependent effects in early retinotopic areas align with recent rodent studies, which 
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show that representations within sensory areas contain information pertinent to task goals, 
motor outcomes, and prior knowledge about sensory environments (Ebrahimi et al., 2022; 
Findling et al., 2023; Mimica et al., 2023; Niell & Stryker, 2010; Stringer et al., 2019). Extending 
these findings, our study demonstrates that human visual areas are more actively involved with 
decision-related computation than previously thought. Our results demonstrate that human 
sensory areas not only code for temporally varying task contexts but also dynamically integrate 
this information with incoming sensory inputs to optimize decision processes. This observation 
challenges the traditional view that sensory areas are primarily dedicated to basic sensory 
processing, suggesting a more multifaceted role in cognitive computation. 

A plausible mechanism for guiding dynamic task coding and context-dependent 
representation of sensory inputs in humans may involve the deployment of selective attention. 
By flexibly prioritizing processing of relevant stimulus features based on current task goals, 
attention may guide the integration of sensory information with shifting task demands. 
Specifically, our observed task-dependent effects in early retinotopic areas are consistent with 
the literature on feature-based attention, which has shown that directing attention to simple 
visual features can modulate representations in early visual cortex (X. Chen et al., 2012; Foster 
& Ling, 2022; Gundlach et al., 2023; Jehee et al., 2011; Liu et al., 2003, 2007; Martinez-Trujillo 
& Treue, 2004; Mirabella et al., 2007; Saenz & Boynton, 2003; Serences & Boynton, 2007; 
Treue & Maunsell, 1996, 1999; Yoo et al., 2022). By modulating neurons coding for perceptual 
features that differentiate between categories, feature-based attention could provide a 
mechanism for improving the separability of different stimulus categories (Navalpakkam & Itti, 
2007; Scolari et al., 2012; Scolari & Serences, 2009). Our result of early modulations is also 
consistent with Ester et al. (2020), who found biases in orientation representations that were 
related to categorization, although their paradigm used a single category boundary as opposed 
to a dynamically updated boundary. Additionally, other work using more complex stimuli such as 
three dimensional objects and human bodies has shown feature-based attention effects in 
higher visual areas such as LOC and the extrastriate body area (EBA), as opposed to early 
visual cortex (Jackson et al., 2017; Thorat & Peelen, 2022). These observations may indicate 
that attentional modulations in V1-V3 are more important for task performance when stimuli are 
relatively simple and require fine-grained spatial detail (e.g., oriented gratings, two-dimensional 
silhouettes), than when stimuli are more complex. In keeping with this idea of attention adapting 
dynamically to the most informative features for a task, a recent behavioral study demonstrated 
that feature-based attention is adaptively allocated according to experience with the variance of 
feature distributions (Witkowski & Geng, 2022). Our findings extend these prior studies by 
demonstrating feature-based attention as a potential mechanism for effectively integrating 
sensory information with changing task requirements within human sensory cortex. 

Despite the relatively low classifier accuracy values that were observed in higher areas, 
we did observe a significant effect of task-relevance in LO1 based on the confusion matrix 
analysis in Figure 3. In this analysis, we demonstrated that classifier confusion matrices from 
LO1 were more aligned with the Linear-2 task template during the Linear-2 task versus the 
Linear-1 task. The divergence of this finding from our classifier confidence analyses, in which 
early areas showed larger task effects than LO1, may indicate that the nature of 
representational changes in LO1 across categorization tasks differs from the changes in V1-V3. 
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Specifically, the confusion matrix analysis captures changes to the relationship between all 16 
shapes in the main shape space grid, including pairs on the same side of the boundary, while 
the classifier confidence analysis only captures the discriminability of shapes across a single 
category boundary. One interesting possibility is that the changes in LO1 from the Linear-1 task 
to the Linear-2 task are primarily driven by re-structuring of shape representations within a given 
category (i.e. “acquired equivalence”; Goldstone, 1994) as opposed to an increase in 
discriminability across the boundary. Another possibility is that context-related changes in early 
areas reflect subtle changes in discriminability that allow the overall structure of the 
representational space to be largely maintained across tasks, while changes in LO1 reflect a 
more dramatic restructuring of sensory codes into a format that resembles a binary or 
categorical code for each task. Such a difference would be consistent with LO1 being a higher 
visual area more closely aligned with decision processes than early areas. Further experiments 
will be needed to evaluate these possibilities. 

When classifier confidence values were broken down based on proximity to the category 
boundary, we observed the largest effects of categorization task on confidence for stimuli 
nearest the boundary, and no effect of task for the furthest stimulus positions. This scaling of 
categorization effects with proximity to the boundary is consistent with a previous fMRI 
experiment (Ester et al., 2020) as well as past behavioral experiments (Ashby & Maddox, 2005; 
Goldstone, 1994, 1998; Livingston et al., 1998; Newell & Bülthoff, 2002). These convergent 
findings suggest that top-down modulatory effects in early visual cortex are strengthened on 
trials with higher category ambiguity, facilitating perceptual discrimination of these challenging 
stimuli. Importantly, our results also build on these past findings by demonstrating an increase in 
the discriminability of representations near the decision boundary during a task that requires 
flexible switching between multiple decision boundaries.  

Task context had more consistent effects on discriminability with respect to the Linear 
tasks compared to the Nonlinear task, with no significant difference across tasks observed for 
Nonlinear confidence (Figure 6). This difference may be due to the fact that the Nonlinear task 
required using a non-linear decision boundary. The non-linear boundary was slightly more 
challenging behaviorally, as demonstrated by the slower RTs observed in the Nonlinear task 
compared to the Linear-1 task, which is also consistent with a past report showing that a 
quadrant task with similar stimuli was more challenging for macaques to learn than a linear rule 
(Op de Beeck et al., 2001). The non-linearity of the boundary may also explain the lack of a 
consistent task-related modulation of Nonlinear confidence in visual cortex. It is possible that 
while top-down mechanisms are capable of selectively enhancing representations along one 
continuous axis in a perceptual space, such a mechanism does not exist for non-linear 
boundaries. On the other hand, it is also possible that practical aspects of the analysis 
prevented the effect from being measured. When Nonlinear confidence was computed for each 
task on “near” trials, we used only trials in the centermost region of the shape space grid (this is 
needed to facilitate a fair comparison across tasks; see Methods) and this resulted in a relatively 
small number of trials available for resampling. Given that the effect of task-relevance was 
expected to be strongest on near trials, such an effect might have been detectable if more trials 
were available. In support of this idea, though we did not observe a task-related modulation of 
Nonlinear confidence, we observed a significant within-task association of Nonlinear confidence 
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with behavioral performance (Figure 7). In this within-task analysis, a larger number of trials are 
available for resampling, which may have led to a more stable effect. Finally, the difference in 
outcomes between these analyses may also indicate that while discriminability of shapes across 
the Nonlinear boundary does not differ across task contexts, there is variability in the quality of 
representations across trials within the Nonlinear task, and this variability is associated with 
behavioral performance.  

Comparing the two Linear tasks, we observed higher SNR for discriminating stimuli 
across the Linear-2 boundary than the Linear-1 boundary (i.e., higher values of similarity to 
Linear-2 template and higher values of Linear-2 confidence, across all tasks). We also observed 
more consistent effects of task relevance on Linear-2 template similarity and Linear-2 
confidence than the analogous measures with respect to Linear-1. Finally, we did not observe 
any association of Linear-1 confidence with behavioral performance, though such an effect was 
observed for Linear-2 and Nonlinear confidence. These findings may be related to the difference 
in perceptual separability, as measured by our image similarity analyses, between the Linear-1 
and Linear-2 categories. The Linear-2 boundary, across which shapes are more perceptually 
distinctive, may also be a more effective target of context-dependent processing via selective 
attention mechanisms. Taken together, these findings may indicate an asymmetry in the 
allocation of attention to different dimensions within our shape space, in a way that reflects 
physical properties of the stimuli.  

Overall, our findings provide evidence for context-dependent modulations of neural 
representations in early visual cortex, and show that these effects differ in accordance with 
temporally shifting task demands. Shape representations were modified to support 
discrimination of currently-relevant shape categories, with effects that were strongest for stimuli 
near the decision boundary. Moreover, these effects were associated with task performance. 
These results may indicate that visual cortex plays an active computational role in the flexible 
categorization of stimuli, providing new insight into how we organize knowledge about visual 
stimuli in the face of changing behavioral requirements.  
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Materials & Methods 
 

Human participants 
Seven (7) participants were recruited from the UCSD community, and were adults 

having normal or corrected-to-normal vision. Participants were between the ages of 24 and 32 
(mean = 27.7, std = 3.0), and 4 out of 7 were female. The protocol for this study was approved 
by the Institutional Review Board at UCSD, and all participants provided written informed 
consent. As part of this experiment, each participant took part in one behavioral training session 
lasting approximately 1 hour, for which they were compensated at a rate of $10/hour and three 
scanning sessions each lasting approximately 2 hours, for which they were compensated at a 
rate of $20/hour. During each scanning session for this experiment, participants also performed 
several runs of a n-back (repeat detection) task on the same stimuli used in our main task (see 
Main task design). Data from this task are not analyzed here but are included in our full open 
dataset (see Data availability). Each participant also participated in a separate retinotopic 
mapping scan session; for five participants this retinotopic mapping session was performed as 
part of an earlier experiment and for the remaining two it was performed just prior to the start of 
the present experiment.  

Acquisition of MRI data 
All magnetic resonance imaging (MRI) scanning was performed using a General Electric 

(GE) Discovery MR750 3.0T research-dedicated scanner at the UC San Diego Keck Center for 
Functional Magnetic Resonance Imaging. We used a Nova Medical 32-channel head coil 
(NMSC075-32-3GE-MR750) to acquire all functional echo-planar imaging (EPI) data, using the 
Stanford Simultaneous Multislice (SMS) EPI sequence (MUX EPI), with a multiband factor of 8 
and 9 axial slices per band (total slices = 72; 2 mm3 isotropic; 0 mm gap; matrix = 104 x 104; 
field of view = 20.8 cm; repetition time/time to echo [TR/TE] = 800/35 ms; flip angle = 52°; 
inplane acceleration = 1). To perform image reconstruction and un-aliasing we used 
reconstruction code from the Stanford Center for Neural Imaging, on servers hosted by Amazon 
Web Services. The initial 16 TRs collected at sequence onset were used as reference images in 
order to transform data from k-space to image space. In addition, two “topup” datasets (17s 
each) were collected at the halfway point of each session, using forward and reverse phase-
encoding directions. These runs were used to correct for distortions in the EPI sequences from 
the same session using topup functionality (Andersson et al., 2003) in the FMRIB Software 
Library (FSL; Jenkinson et al., 2012). 

 
 In addition to the functional data, we also collected a high-resolution anatomical scan for 
each participant as part of that participant’s retinotopic mapping session. This anatomical T1 
image was used for segmentation, flattening, and delineation of the retinotopic mapping data. 
For three out of the seven participants, we acquired this anatomical scan using the same 32 
channel head coil used for functional scanning, and for the remaining four participants, we used 
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an in vivo eight-channel head coil. Anatomical scans were acquired using accelerated parallel 
imaging (GE ASSET on a FSPGR T1-weighted sequence; 1 x 1 x 1 mm3; 8136 ms TR; 3172 ms 
TE; 8° flip angle; 172 slices; 1 mm slice gap; 256 x 192 cm matrix size). When the 32-channel 
head coil was used, anatomical scans were corrected for inhomogeneities in signal intensity 
using GE’s ‘phased array uniformity enhancement’ (PURE) method. 

Preprocessing of functional MRI data 
Preprocessing of functional data was performed using tools from FSL and FreeSurfer 

(available at http://www.fmrib.ox.ac.uk/ fsl and https://surfer.nmr.mgh.harvard.edu). We first 
performed cortical surface gray-white matter volumetric segmentation of the anatomical T1 
scans for each participant, using the recon-all function in FreeSurfer (Dale et al., 1999). The 
segmented T1 data were then used to define cortical meshes on which we defined retinotopic 
ROIs (see next section for details). We also used the anatomical T1 data in order to align multi-
session functional data to a common space for each participant. This was performed by using 
the first volume of the first scan for each session as a template, and using this template to align 
the entire functional session to the anatomical scan for each participant. We used the manual 
and automatic boundary-based registration tools in FreeSurfer to perform co-registration 
between functional and anatomical data (Greve & Fischl, 2009), then used the resulting 
transformation matrix and FSL FLIRT to transform all functional data into a common space 
(Jenkinson et al., 2002; Jenkinson & Smith, 2001). Next, we used FSL MCFLIRT to perform 
motion correction (Jenkinson et al., 2002), with no spatial smoothing, with a final sinc 
interpolation stage, and 12° of freedom. Finally, we performed de-trending to remove slow drifts 
in the data using a high-pass filter (1/40 Hz cutoff).  

 
Following these initial preprocessing stages, we z-scored the data within each scan run 

on a per-voxel basis to correct for differences in mean and variance across runs. This and all 
subsequent analyses were performed using Python 3.7.10 (Python Software Foundation, 
Wilmington, DE).  Next, we obtained a single estimate for each voxel’s activation on each trial 
by averaging the time series over a window spanning from 4-7 TRs following image onset (see 
Main task design for more details on task timing and procedure). We then extracted data from 
voxels within several regions of interest (ROIs; see next section) that were used for subsequent 
analyses.  

Retinotopic ROI definitions 
We defined several retinotopic visual ROIs: V1, V2, V3, V3AB, hV4, LO1, LO2, and IPS, 

following previously identified retinotopic mapping procedures (Engel et al., 1997; Jerde & 
Curtis, 2013; Sereno et al., 1995; Swisher et al., 2007; Wandell et al., 2007; Winawer & Witthoft, 
2015). We combined all intraparietal sulcus (IPS) subregions (IPS0, IPS1, IPS2, IPS3), into a 
single combined IPS ROI, as this led to improved classifier accuracy relative to the individual 
sub-regions. During retinotopic mapping runs, participants viewed black-and-white contrast 
reversing checkerboard stimuli that were configured as a rotating wedge (10 cycles, 36 s/cycle), 
expanding ring (10 cycles, 32 s/cycle), or bowtie shape (8 cycles, 40 s/cycle). During the 
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rotating wedge task, a contrast detection task (detecting dimming events approximately every 
7.5 s) was used to encourage covert attention to the stimulus. Average accuracy on this task 
was 79.07 ± 3.84% (mean ± SEM across 7 participants). The stimulus had a maximum 
eccentricity of 9.3°.  

 
After defining retinotopic ROIs using these methods, we further thresholded the ROIs 

using an independent localizer task to identify voxels that were responsive to the region of 
space in which shape stimuli could appear (see Silhouette localizer task for details on this task). 
The data from the localizer were analyzed using a general linear model (GLM) implemented in 
FSL’s FMRI Expert Analysis Tool (FEAT; version 6.00). This analysis included performing brain 
extraction and pre-whitening (Smith, 2002; Woolrich et al., 2001). We generated predicted 
BOLD responses by convolving each stimulus onset with a canonical gamma hemodynamic 
response (phase = 0s, s.d. = 3s, lag = 6s), and combined individual runs using a standard 
weighted fixed effects analysis. We identified voxels that were significantly activated by the 
stimulus versus baseline (p < 0.05, false discovery rate (FDR) corrected). This mask of 
responsive voxels was then intersected with each ROI definition to obtain the final thresholded 
ROI definitions. The exception to this was the IPS ROIs, to which we did not apply any 
additional thresholding; this was because the localizer yielded few responsive voxels in IPS for 
some participants.  

Shape stimuli 
We used a set of shape silhouette stimuli that varied parametrically along two 

continuous dimensions, generating a 2-dimensional shape space (Figure 1A). Each shape in 
this space was a closed contour composed of radial frequency components (RFCs; Op de 
Beeck et al., 2001; Zahn & Roskies, 1972). Each shape was composed of 7 different RFCs, 
where each component has a frequency, amplitude, and phase. To generate the 2-dimensional 
shape space, we parametrically varied the amplitude of two RFCs, leaving the others constant. 
The manipulation of RFC amplitude was used to define an x/y grid in arbitrary units that 
spanned positions between 0-5 a.u., with adjacent grid positions spaced by 0.1 a.u. All shape 
space positions on all trials were sampled from this grid of shape space positions. We also 
defined a coarser grid of 16 points (a 4x4 grid) which was used to generate the 16 stimuli that 
were shown on the majority of trials; this grid is referred to as the “main grid”, and included all 
x/y combinations of the points [0.1, 1.7, 3.3, 4.9] in shape space coordinates. Stimuli 
corresponding to points in shape space that were not part of the main grid were used to make 
the tasks more difficult, see Main task design for details. 

  
We divided the shape space into four quadrants by imposing boundaries at the center 

position of the grid (2.5 a.u.) in each dimension. To define the binary categories that were 
relevant for each task (see Main task design), we grouped together two quadrants at a time, 
with the Linear-1 task and Linear-2 tasks grouping quadrants that were adjacent (creating either 
a vertical or horizontal linear boundary in shape space), and the Nonlinear task grouping 
quadrants that were non-adjacent (creating a non-linear boundary). During task training as well 
as before each scanning run, we utilized a “prototype” image for each shape space quadrant as 
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a way of reminding participants of the current categorization rule. The prototype for each 
quadrant was positioned directly in the middle of the four main grid positions corresponding to 
that quadrant (i.e. the x/y coordinates for the prototypes were combinations of [0.9, 4.1] a.u.). 
These prototype images were never shown during the categorization task trials, to prevent 
participants from simply memorizing the prototypes. Shapes used in the task were also never 
positioned exactly on any quadrant boundary in order to prevent any ambiguity about category. 
  

Display parameters 
During all scanning runs, stimuli were presented to participants by projecting onto a 

screen that was mounted on the inside of the scanner bore, just above the participant’s chest. 
The screen was visible to the participant via a mirror that was attached to the head coil. The 
image projected onto the screen was a rectangle with maximum horizontal eccentricity of 13 
degrees (center-to-edge distance) and maximum vertical eccentricity of 10 degrees. In the main 
task and silhouette localizer task, the region of the screen in which shapes could appear 
subtended a maximum eccentricity of 11 degrees in the horizontal direction, and 9 degrees in 
the vertical direction. The fixation point in all tasks was a gray square 0.2 degrees in diameter; 
participants were instructed to maintain fixation on this point throughout all experimental runs. 
  

In the main task, shapes were displayed as gray silhouettes on a gray background. For 
all participants except for the first participant (S01), the shapes were darker than the 
background (shape = 31, background = 50; luminance values are in the range 0-255). For S01, 
the shapes were lighter than the background (shape = 230, background = 77). The change in 
parameters was made because the brighter stimuli shown to S01 led to display artifacts when 
scanning subsequent participants, and darker stimuli reduced these artifacts. S01 reported no 
artifacts and performed well on the task. No gamma correction was performed. 
 

Main task design 
The main experimental task consisted of categorizing shape silhouette stimuli (Figure 1) 

into binary categories. There were three task conditions: Linear-1, Linear-2, and Nonlinear, each 
of which corresponded to a different binary categorization rule. Shape stimuli were drawn from a 
two-dimensional shape space coordinate system (see Shape stimuli). The Linear-1 and Linear-2 
tasks used a boundary that was linear in this shape space, while the Nonlinear task used a 
boundary that was non-linear in this shape space (requiring participants to group non-adjacent 
quadrants into a single category, see Figure 1 for illustration). Each trial consisted of the 
presentation of one shape for 1s, and trials were separated by an inter-trial interval (ITI) that 
was variable in length, uniformly sampled from the interval 1-5s. Participants responded on 
each trial with a button press (right index or middle finger) to indicate which binary category the 
currently viewed shape fell into; the mapping between category and response was counter-
balanced within each scanning session. Participants were allowed to make a response anytime 
within the window of 2s from stimulus onset. Feedback was given at the end of each run, and 
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included the participant’s overall accuracy, as well as their accuracy broken down into “easy” 
and “hard” trials (see next paragraph for description of hard trials), and the number of trials on 
which they failed to respond. No feedback was given after individual trials. 
  

Each run in the task consisted of 48 trials and lasted 261s (327 TRs). Of the 48 trials, 32 
of these used shapes that were sampled from a grid of 16 points evenly spaced within shape 
space (“main grid”, see Shape stimuli), each repeated twice. These 16 shapes were presented 
twice per run regardless of task condition. The remaining 16 trials (referred to as “hard” trials) 
used shapes that were variable depending on the current task condition and the difficulty level 
set by the experimenter. The purpose of these trials was to allow the difficulty level to be 
controlled by the experimenter so that task accuracy could be equalized across all task 
conditions, and prevent any single task from being trivially easy for each participant. For each 
run of each task, the experimenter selected a difficulty level between 1-13, with each level 
corresponding to a particular bin of distances from the active categorization boundary (higher 
difficulty denotes closer distance to boundary). For the Nonlinear  task, the distance was 
computed as a linear distance to the nearest boundary. The “hard” trials were generated by 
randomly sampling 16 shapes from the specified distance bin, with the constraint that 4 of the 
shapes had to come from each of the four quadrants in shape space. This manipulation ensured 
that responses were balanced across categories within each run. For many of the analyses 
presented here, we excluded these hard trials, focusing only on the “main grid” trials where the 
same images were shown across all task conditions. 
  

Participants performed 12 runs of the main task within each scanning session, for a total 
of 36 runs across all 3 sessions (with the exception of one participant (S06) for whom 3 runs are 
missing due to a technical error). The 12 runs in each session were divided into 6 total “parts” 
where each part consisted of a pair of 2 runs having the same task condition and the same 
response mapping (3 conditions x 2 response mappings = 6 parts). Each part was preceded by 
a short training run, which consisted of 5 trials, each trial consisting of a shape drawn from the 
main grid. The scanner was not on during these training runs, and the purpose of these was to 
remind the participant of both the currently active task and the response mapping before they 
began performing the task runs for that part. The order in which the 6 parts were shown was 
counter-balanced across sessions. Before each scan run began, the participant was again 
reminded of the current task and response mapping via a display that presented four prototype 
shapes, one for each shape space quadrant (see Shape stimuli for details on prototype 
shapes). The prototypes were arranged with two to the left of fixation and two to the right of 
fixation, and the participant was instructed that the two leftmost shapes corresponded to the 
index finger button and the two rightmost shapes corresponded to the middle finger button. This 
display of prototype shapes was also used during the training runs to provide feedback after 
each trial: after each training trial, the four prototype shapes were shown, and the two 
prototypes corresponding to the correct category were outlined in green, with accompanying 
text that indicated whether the participant’s response was correct or incorrect. This feedback 
display was not shown during the actual task runs. 
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Before the scan sessions began, participants were trained to perform the shape 
categorization tasks in a separate behavioral session (training session took place on average 
4.7 days before the first scan session). During this behavioral training session, participants 
performed the same task that they performed in the scanner, including 12 main task runs (2 
runs for each combination of condition and response mapping; i.e., each of the 6 parts). As in 
the scan sessions, each part was preceded by training runs that consisted of 5 trials, each 
accompanied by feedback. Participants completed between 1-3 training runs before starting 
each part. Average training session accuracy was 0.82 ± 0.01 (mean ± SEM across 
participants) for the Linear-1 task, 0.81 ± 0.02 for the Linear-2 task, and 0.78 ± 0.03 for the 
Nonlinear task. 
 

Silhouette localizer task 
A silhouette localizer task was used to identify voxels that were responsive to all the 

regions of retinotopic space where the shape stimuli could appear. For this task, a single 
silhouette shape was generated that covered the area spanned by any shape in the main grid.  
The silhouette region was rendered with a black-and-white flashing checkerboard (spatial period 
= 2 degrees) against a mid-gray background. On each trial, the flashing checkerboard silhouette 
stimulus appeared for a total duration of 7s, with trials separated by an ITI that varied between 
2-8s (uniformly sampled). During each trial the checkerboard was flashed with a frequency of 5 
Hz (1 cycle = on for 100 ms, off for 100 ms). On each cycle, the checkerboard was re-drawn 
with a randomized phase. There were 20 trials per run of this task, and participants performed 
between 4 and 7 runs of this task across all sessions. During all runs of this task, participants 
were instructed to monitor for a contrast dimming event and press a button when the dimming 
occurred. Dimming events occurred with a probability of 0.10 on each frame, and were 
separated by a minimum of 4 cycles. There were on average 17 dimming events in each run 
(minimum 10; maximum 25). Average hit rate (proportion of events correctly detected) was 0.72 
± 0.10 (mean ± s.d. across participants), and the average number of false alarms per run was 
1.98 ± 2.05 (mean ± s.d. across participants). 
  

Image similarity analysis 
 To estimate the perceptual discriminability of our shape categories, we used two 
computer vision models to extract activations in response to each stimulus image. We first used 
the GIST model (Oliva & Torralba, 2001), which is based on Gabor filters and captures low-level 
spectral image properties. We also extracted features from a pre-trained SimCLR model (T. 
Chen et al., 2020), which is a self-supervised model trained using contrastive learning on a 
large image database. We selected these two models because the GIST model captures clearly 
defined image properties similar to those represented in the early visual system, while the 
SimCLR model can capture a wider set of image features, including mid-level and high-level 
properties. The GIST model was implemented in Matlab, using a 4x4 spatial grid, 4 spatial 
scales, and 4 orientations per spatial scale. The version of SimCLR that we used was 
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implemented in PyTorch and used a ResNet-50 backbone (pre-trained model downloaded from 
https://pypi.org/project/simclr/). We extracted activations from blocks [2,6,12,15] and performed 
a max-pooling operation (kernel size = 4, stride = 4) to reduce the size of activations from each 
block. We used principal components analysis (PCA) to further reduce the size of activations, 
retaining a maximum of 500 components per block, and concatenated the resulting features 
across all blocks.  
 

Using these activations, we computed the separability of shape categories across each 
of our boundaries (Linear-1, Linear-2, Nonlinear) by computing all pairwise Euclidean distances 
between main grid shapes in the same category (within-category distances) and main grid 
shapes in different categories (between-category distances). We then computed the average of 
the within-category distances (w) and between-category distances (b). The separability measure 
for each boundary was computed as: (b-w)/(b+w).  

Multivariate classifier analysis 
 We used a multivariate classifier to estimate how well the voxel activation patterns from 
each ROI could be used to discriminate different shape stimuli. Classification was performed 
within each participant, each ROI, and each task condition separately. Before training the 
classifier, we mean-centered the activation patterns on each trial, by subtracting the average 
signal across voxels from each trial. We cross-validated the classifier by leaving one run out at a 
time during training, looping over held-out test runs so that every run served as the test run 
once. During training of the classifier, we used only trials on which main grid shapes were 
shown, meaning there were 16 unique shapes that were treated as distinct classes. We then 
constructed a 16-way multinomial logistic regression classifier, implemented using scikit-learn 
(version 1.0.2) in Python 3.6. We used the ‘lbfgs’ solver and L2 regularization. To select the L2 
regularization parameter (C), we created a grid of 20 candidate C values that were 
logarithmically spaced between 10-9 and 1. We then used nested cross-validation on the training 
data only to select the C resulting in highest accuracy across folds, and re-fit the model for the 
entire training set using the best C parameter. The resulting classifier was then used to predict 
the class (1-16) for all trials in the test dataset (note that this included some trials where the 
viewed shape was not in the main grid, and thus was not included in classifier training). In 
addition to a predicted class for each trial, the classifier returned a continuous probability 
estimate for each of the 16 classes, obtained using a softmax function.  
 
 To evaluate whether the accuracy of the classifier was significantly greater than chance, 
we used a permutation test. To do this, we performed 1000 iterations of training and testing the 
classifier, constructed in the same way as described above, using shuffled labels for the data. 
We always performed shuffling within a given scan run, so that the run labels were kept intact, 
and leave-run-out cross-validation was performed as in the original method. To make this 
computationally feasible, we did not perform C selection on every shuffling iteration, instead we 
used a fixed C value of 0.023, which was approximately the median of the C values obtained 
across all models fit to the real data. We obtained a p-value for each individual participant, ROI, 
and task condition by computing the proportion of shuffle iterations on which shuffled classifier 
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accuracy was greater than or equal to the real classifier accuracy. To obtain p-values for the 
participant-averaged classification accuracy for each ROI and task, we used the same 
procedure but first averaged the values across participants, within each shuffle iteration. All 
reported p-values were false-discovery-rate (FDR) corrected at q = 0.01 (Benjamini & 
Hochberg, 1995). 

Confusion matrix analysis 
For each participant, ROI, and task, we generated a confusion matrix for the 16-way 

multinomial classifier. This was a 16 x 16 matrix where each row represents the set of trials on 
which a given shape was actually shown, and each column in the row represents the proportion 
of those trials that the classifier assigned into each of the 16 classes, and each row sums to 1. 
To compute confusion matrices we used only trials in the main grid, and only used trials on 
which the participant made a correct behavioral response. To quantify the alignment of 
confusion matrices with the representation needed to solve each task, we generated template 
confusion matrices for the Linear-1 and Linear-2 tasks, where each template matrix had 0 for 
pairs of stimuli that were on different sides of the boundary and 1 for pairs of stimuli that were 
on the same side of the boundary. We then computed the Pearson correlation coefficient 
between each actual confusion matrix and each template confusion matrix.  

Classifier confidence   
For several analyses, we were specifically interested in the discriminability of shapes 

belonging to different binary categories. To measure the discriminability of shapes across each 
boundary (Linear-1, Linear-2, Nonlinear), we used the continuous probability estimates output 
by the 16-way classifier to compute classifier confidence with respect to each boundary. For 
each boundary and each individual trial, our measure of classifier confidence was computed as 
the difference between the total probability assigned by the classifier to the “correct” binary 
category for that trial [p(correct)] and the total probability assigned by the classifier to the 
“incorrect” binary category for that trial [p(incorrect)]. We obtained p(correct) by summing the 
probability assigned to the 8 main grid shapes in the same category as the shape on the current 
trial (based on whichever category boundary was currently being considered), and p(incorrect) 
by summing the probability assigned to the 8 main grid shapes in the other category. Note that 
this measure of confidence can be computed even when the test trial shape is not part of the 
main grid. To interpret this measure, large positive values of confidence indicate high 
discriminability of shapes across a given category boundary, and large negative or zero values 
indicate poor discriminability.  

 
For the analyses where confidence values are broken down by “far”, “middle” and “near” 

trials, the far and middle trials are always restricted to positions in the main grid. For the Linear-
1 and Linear-2 tasks, there are 8 total positions counted as far and 8 counted as middle. For the 
Nonlinear task, we counted the 4 corner positions as far and the 12 other positions as middle. 
The near trials are always points that are not part of the main grid; see next section for details 
on how these points were sampled to compute average confidence. When average confidence 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2024. ; https://doi.org/10.1101/2023.09.11.557257doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

values are reported, they are averaged over behaviorally correct trials only (unless otherwise 
specified).  

Bootstrap resampling procedures 
When comparing classifier confidence values across tasks on “near” trials (i.e. those 

closest to each boundary and not in the main grid), we used bootstrap resampling to match the 
distribution of shape positions sampled in each task for each participant. This was implemented 
because the range of shape positions that were sampled on near trials differed between tasks 
(see Figure 1B), and this difference in stimulus properties could have, if not corrected, 
contributed to a difference in average confidence across tasks. Resampling was performed with 
respect to one categorization boundary at a time and for each participant separately. For each 
of the linear boundaries (Linear-1 and Linear-2), we used resampling to equate the set of 
positions sampled between the Linear-1 and Linear-2 tasks. To achieve this, for each boundary 
we collapsed the set of coordinates sampled on the near trials in each task onto a single axis 
that ran perpendicular to the boundary of interest. We then binned the coordinates into a set of 
6 linearly-spaced bins that spanned the portion of shape space nearest the boundary (from 1.8 
to 3.2 in shape space coordinates; see Shape stimuli). Since not all bins were necessarily 
sampled in both Linear-1 and Linear-2 tasks (this depended on the task difficulty level for each 
participant), we then selected a subset of bins that were 1) sampled from in both task conditions 
and 2) were also symmetric around the categorization boundary (this could be all 6 bins, 4 bins, 
or 2 bins). For each task, we then performed 1,000 iterations on which we resampled with 
replacement a set of approximately 50 trials that evenly sampled from each bin, and computed 
the average classifier confidence for this resampled set. The final confidence values for each 
participant reflect the average across these 1,000 bootstrapping iterations.  
 

When computing confidence with respect to the Nonlinear boundary, we used the same 
procedure to equate the set of positions sampled between all three categorization tasks (Linear-
1, Linear-2, Nonlinear). To bin positions in this case, instead of collapsing coordinates onto a 
single axis, we computed the distance between each [x,y] coordinate and the nearest linear 
boundary, and multiplied by (+1) for coordinates in nonlinear category 1 or (-1) for coordinates 
in nonlinear category 2, which results in a single coordinate value that captures distance from 
the boundary as well as category sign. We restricted the set of included points to those that fell 
within the centermost square region of the grid (from 1.8 to 3.2 in shape space coordinates 
along both axes). These coordinate values were then binned and resampled as in the original 
procedure. 
 

We also used bootstrap resampling to equate the distribution of coordinate positions 
sampled on correct versus incorrect trials. This resampling was always performed within one 
task at a time, and only for confidence values with respect to the task-relevant categorization 
axis. As in the other procedure, we binned the sampled coordinates along the relevant axis into 
a set of linearly-spaced bins (between 1.8 and 3.2 in shape space coordinates). In this case we 
used 12 bins, because the sampling of points was more dense when considering the task-
relevant axis only. We then identified a subset of these 12 bins that were sampled on both 
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correct and incorrect trials, and were also symmetric around the categorization boundary. We 
then resampled with replacement a set of approximately 100 correct trials and approximately 
100 incorrect trials that each evenly sampled from all bins, averaged the confidence values 
across these 100 trials, and repeated this procedure 1000 times.  

Statistical analysis 
To perform statistical comparisons of classifier confidence values and template 

correlation coefficient values (see previous sections) across ROIs and categorization tasks, we 
used repeated measures ANOVA tests, implemented using statsmodels in Python 3.6. To 
obtain non-parametric p-values for these tests (which are suitable for small sample sizes), we 
performed permutation tests where we shuffled the values within each participant 10,000 times, 
and computed F-statistics for each effect on the shuffled data. This resulted in a null distribution 
of F-values for each effect. The final p-values for each effect were based on the proportion of 
iterations on which the shuffled F-statistic was greater than or equal to the real F-statistic. F-
statistics reported in the text reflect those obtained using the real (unshuffled) data.  
 

To perform post-hoc tests for differences between tasks in each ROI, we used a paired 
t-test with permutation. For each ROI, we computed a t-statistic for the true difference between 
the conditions across participants, then performed 10,000 iterations where we randomly 
swapped the values within each participant across conditions, with 50% probability. This 
resulted in a null distribution of t-statistics. The final two-tailed p-value was obtained by 
computing the proportion of iterations on which the shuffled t-statistic was greater than or equal 
to the real t-statistic and the proportion of iterations on which the real t-statistic was greater than 
or equal to the shuffled t-statistic, taking the minimum and multiplying by 2.  

Code availability statement 
All code required to reproduce our analyses is available at 
https://github.com/mmhenderson/shapeDim.  

Data availability 
All data used in the present study will be deposited as MATLAB-formatted data in Open Science 
Framework. 
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Supplementary Material 
 

 
 
Supplementary Figure 1. Classifier confusion matrix alignment with the Nonlinear template 
does not differ significantly across task conditions. (A) Template matrix for the Nonlinear task, 
representing the pattern of similarity expected for a perfect binary representation of the 
Nonlinear categorization scheme. (B) The similarity (Pearson correlation coefficient) between 
the Nonlinear template and the actual confusion matrix for each task and ROI. Gray dots 
represent individual participants, colored circles and error bars represent the mean ± SEM 
across 7 participants. A two-way repeated measures ANOVA on these similarity values 
revealed a main effect of ROI but no main effect of task or ROI x task interaction (ROI: F(7,42) = 
45.16, p < 0.001; Task: F(2,12) = 1.67, p = 0.229; ROI x Task: F(14,84) = 1.08, p = 0.376).  
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Supplementary Table 1. Results of three-way repeated-measures ANOVA tests on the 
classifier confidence values for far, middle, and near trials, with factors of ROI, task and 
confidence boundary (i.e., comparing Linear-1 confidence versus Linear-2 confidence). 
Classifier confidence values are shown in Figure 5. All p-values were obtained using a 
permutation test, see Methods for details. 
 
 
Far trials 
 F Value Num DF Den DF p 
ROI 43.49 7 42 0.0000 
Task 0.65 1 6 0.4532 
Boundary 22.09 1 6 0.0025 
ROI:Task 0.44 7 42 0.8710 
ROI:Boundary 12.07 7 42 0.0000 
Task:Boundary 0.65 1 6 0.4559 
ROI:Task:Boundary 0.71 7 42 0.6624 
     
Middle trials 
 F Value Num DF Den DF p 
ROI 24.37 7 42 0.0000 
Task 3.10 1 6 0.1243 
Boundary 21.21 1 6 0.0036 
ROI:Task 0.21 7 42 0.9826 
ROI:Boundary 6.51 7 42 0.0000 
Task:Boundary 12.16 1 6 0.0120 
ROI:Task:Boundary 0.54 7 42 0.8048 
     
Near trials 
 F Value Num DF Den DF p 
ROI 4.85 7 42 0.0006 
Task 6.56 1 6 0.0437 
Boundary 0.13 1 6 0.7400 
ROI:Task 0.43 7 42 0.8951 
ROI:Boundary 1.37 7 42 0.2427 
Task:Boundary 6.05 1 6 0.0453 
ROI:Task:Boundary 2.06 7 42 0.0647 
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Supplementary Table 2. Results of two-way repeated-measures ANOVA tests on the 
Nonlinear confidence values for far, middle, and near trials, with factors of ROI and task. 
Classifier confidence values are shown in Figure 6. All p-values were obtained using a 
permutation test, see Methods for details. 
 
  
Far trials 
 F Value Num DF Den DF p 
ROI 42.19 7 42 0.0000 
Task 0.53 2 12 0.6034 
ROI:Task 0.60 14 84 0.8692 
     
Middle trials 
 F Value Num DF Den DF p 
ROI 22.25 7 42 0.0000 
Task 0.74 2 12 0.5073 
ROI:Task 0.78 14 84 0.7015 
     
Near trials 
 F Value Num DF Den DF p 
ROI 2.25 7 42 0.0480 
Task 1.35 2 12 0.3123 
ROI:Task 0.83 14 84 0.6414 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 24, 2024. ; https://doi.org/10.1101/2023.09.11.557257doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557257
http://creativecommons.org/licenses/by-nc-nd/4.0/

